Proceedings of the
35th European Safety and Reliability Conference (ESREL2025) and
the 33rd Society for Risk Analysis Europe Conference (SRA-E 2025)
15 – 19 June 2025, Stavanger, Norway

A Framework for Transforming Process Control System Data from a Hydrogen Fueling Station into HyCReD Data

Cristian Schaad1,a, Carlo Tiebe2 and Katrina M. Groth1,b

1Reliability Engineering, Center for Risk and Reliability (CRR), University of Maryland, USA.

2Division 8.1 Sensors, Measurement and Testing Methods, Bundesanstalt für Materialforschung und-prüfung (BAM), Germany.

ABSTRACT

Reliability data for hydrogen infrastructure components is essential for developing Quantitative Risk Assessment (QRA) for these technologies, which in turn is necessary for a safer deployment and expansion of the hydrogen market. However, there is currently a lack of hydrogen component reliability data available for these systems, thus limiting the usefulness of insights obtained from these QRA. The Hydrogen Component Reliability Database (HyCReD) has been proposed as a tool for reliability data collection and as a source for future QRAs. In this paper, we develop a digital tool that automatically processes data coming from Process Control System (PCS) in a hydrogen fueling station, detects the relevant failure events for hydrogen systems during its operation, and then logs the event information into HyCReD. To build this tool, we first categorized the station components in hydrogen service, their specific failure modes, and the specific failure mechanisms that are relevant to a QRA. Then, we identified the data available in the station PCS and the methods available for diagnosing the relevant failure events. The resulting tool is divided into three steps: (1) PCS data collection through an API, (2) data analysis for the detection and diagnosis of new failure events, and (3) logging that event into HyCReD. Finally, we discuss the potential for expanding the detection and diagnosis to more complex failure modes present in a hydrogen fueling station. This digital tool is set for implementation and validation on an experimental hydrogen fueling site. The goal for this digital tool is to be applicable to every kind of hydrogen fueling station and to be extendable to similar hydrogen technologies.

Keywords: Reliability data, Hydrogen safety, HyCReD, Hydrogen fueling stations.



Download PDF