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Reliability data for hydrogen infrastructure components is essential for developing Quantitative Risk Assessment 

(QRA) for these technologies, which in turn is necessary for a safer deployment and expansion of the hydrogen 

market. However, there is currently a lack of hydrogen component reliability data available for these systems, thus 

limiting the usefulness of insights obtained from these QRA. The Hydrogen Component Reliability Database 

(HyCReD) has been proposed as a tool for reliability data collection and as a source for future QRAs. In this paper, 

we develop a digital tool that automatically processes data coming from Process Control System (PCS) in a hydrogen 

fueling station, detects the relevant failure events for hydrogen systems during its operation, and then logs the event 

information into HyCReD. To build this tool, we first categorized the station components in hydrogen service, their 

specific failure modes, and the specific failure mechanisms that are relevant to a QRA. Then, we identified the data 

available in the station PCS and the methods available for diagnosing the relevant failure events. The resulting tool 

is divided into three steps: (1) PCS data collection through an API, (2) data analysis for the detection and diagnosis 

of new failure events, and (3) logging that event into HyCReD. Finally, we discuss the potential for expanding the 

detection and diagnosis to more complex failure modes present in a hydrogen fueling station. This digital tool is set 

for implementation and validation on an experimental hydrogen fueling site. The goal for this digital tool is to be 

applicable to every kind of hydrogen fueling station and to be extendable to similar hydrogen technologies.
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1. Introduction
Safety codes and standards (SCS) are essential for 

enabling a wider, safer deployment of hydrogen 

infrastructure. SCS employ quantitative risk 

assessment (QRA), a formal and systematic tool, 

to quantify the overall risks of these technologies. 

However, the QRA developed for current SCS 

have used generic components failure data 

obtained from other industries, owing to a lack of 

hydrogen-specific component reliability data 

(West et al. 2022).

The Hydrogen Component Reliability 

Database (HyCReD) was designed to address 

these issues by enhancing the availability and 

quality of hydrogen-specific failure data to 

support QRA and reliability studies (Groth et al. 

2024). Several of the gaps found in other 

collection databases were addressed for 

developing HyCReD, in particular, defining the 

failure modes, failure mechanisms, leak detection 

and the occurrence of hydrogen accumulation 

after an incident; essential information which is 

not accounted for in the current hydrogen 

reliability databases. To date, the collection of 

failure events in HyCReD has been done 

manually from previous public failure cases, a 

time-consuming task which requires the analysis 

of multiple sources for details on the event. 

In this work, we propose a digital 

framework to partially automate the collection of 
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failure events into the HyCReD format for 

components and equipment in a hydrogen fueling 

station. The reliability and availability of 

hydrogen fueling stations represent a challenge to 

the widespread deployment of this infrastructure, 

stemming from high failure rates and the system 

downtime caused by those events (Kurtz et al. 

2020). Thus, HyCReD provides insight into how 

to address a critical barrier to adoption of early-

stage hydrogen technologies. 

The structure of this paper is as follows. 

Section 2 presents the background information for 

this work: the structure of HyCReD, the 

characteristics of the hydrogen fueling station 

where this case study is applied, and a review of 

the current methods for failure diagnostics. 

Section 3 presents the high-level overview of the 

framework, the stages and requirements for its 

process and the procedure for the automatic 

diagnosis and logging into HyCReD. Section 4 

discusses the potential benefits of the framework, 

depth achievable on the diagnosis, and future 

work regarding the development and 

implementation. 

2. Data and methods 
2.1 HyCReD 
As it was introduced, HyCReD was designed to 

enhance the quality of hydrogen-specific failure 

data by addressing several aspects missing in 

other data collection tools (Groth et al. 2024). 

This database is structured with 31 data fields 

describing the characteristics of a failure incident, 

involving 3 data categories: 14 fields 

corresponding to the system information, 12 

fields to the event description and 5 fields to the 

maintenance details. System information 

summarizes the facility characteristics where the 

incident occurred, event description details the 

causes and consequences of the incident, and the 

maintenance information documents the service 

performed to resolve the incident. Table 1 

summarizes the data fields present in HyCReD. 

The U.S National Renewable Energy Laboratory 

(NREL) and the University of Maryland (UMD) 

are developing a data coding guide that provides 

further explanations on the HyCReD fields and 

how to interpret data (Robinson et al. 2024).  

 

 

Table 1: HyCReD Fields 

# HyCReD field Data type Category 

1 Facility 

Identification  

Categorical System 

Information 

2 Facility Type Categorical 

3 Service/Usage Categorical 

4 Facility Nominal 

Working Pressure 

(bar) 

Numerical 

5 H2 Phases on Site Categorical 

6 Equipment 

Description 

Narrative 

7 Subsystem  Categorical 

8 Functional Group Categorical 

9 Component Categorical 

10 Component 

Nominal Working 

Pressure (bar)  

Numerical 

11 Component 

Maximum 

Allowable Working 

Pressure (MAWP) 

(bar) 

Numerical 

12 Component 

Population 

Numerical 

13 Installation Date Datetime 

14 P&ID Part Number Categorical 

15 Date & Time of 

Event 

Datetime Event 

Description 

16 Phase of Operations Categorical 

17 Failure Mode Categorical 

18 Failure Mechanism Categorical 

19 Failure Root Cause 

Description 

Narrative 

20 Failure Severity Categorical 

21 H2 release? Categorical 

22 H2 release size  Numerical 

23 Accumulation? Categorical 

24 Detection? Categorical 

25 Detection notes Narrative 

26 Ignition? (yes/no) Categorical 

27 Consequences Narrative Maintenance 

Details 28 Date & Time Repair 

Started 

Datetime 

29 Date & Time Repair 

Completed 

Datetime 

30 Date & Time Station 

Restarted 

Datetime 

31 Maintenance 

Description 

Narrative 
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2.2 Hydrogen fueling station 
The fueling station in consideration for this case 

study is currently under construction at the 

H2Safety@BAM Competence Center for safe 

hydrogen technologies, which is part of the 

German Institute for Federal Materials 

Researching and Testing (Bundesanstalt für 

Materialforschung und-prüfung (BAM)). This 

station will serve as a test platform for the 

development of digital-based solutions for 

ensuring the safety and reliability of this hydrogen 

technology under the German QI-Digital 

initiative (“QI-Digital Initiative,” n.d.). The 

station can store up to 330 kg of gaseous hydrogen 

and supply it compressed at both 35 and 70 MPa, 

for industrial and light-duty vehicles. 

From the Process and Instrumentation 

Diagram (P&ID) of the planned station, the 

components were categorized for type and 

functional group according to the taxonomy 

developed for HyCReD. A total of 180 

components are found in the station, out of which 

167 are under hydrogen service. Among the most 

common types are valves, with 73 in total among 

manual, shut-off, check and needle valves; 

sensing equipment with 62 components, and 

pressure relief devices with 14. Table 2 

summarizes every component by type. 

Table 2: Count of components in station by type 

Component Count 

Check valve 7 

Compressor 1 

Fitting 5 

Flexible unloading hose 1 

Flow control valve 7 

Heat exchanger 1 

Hose 2 

Hydrogen filter 7 

Manual valve 40 

Pressure regulator 3 

Pressure relief device 14 

Pressure sensor 42 

Shut-off valve 19 

Tank type I 6 

Tank type IV 2 

Temperature sensor 20 

Water process line 3 

Total 180 

 

For each component type, the expected 

failure modes were then identified using the 

taxonomy for fueling stations defined in 

HyCReD. The identification of the failure modes 

was supported by a Hazard and Operability 

(HAZOP) study conducted by representatives 

from BAM, the fueling station manufacturer, and 

a risk consultant. During this analysis, various on-

site parameters of the station were evaluated, 

considering potential consequences that may 

happen without protective measures and 

identifying measures to mitigate the risks. To 

complement the failure mode identification 

process, several other Failure Mode and Effect 

Analysis (FMEA) done on hydrogen fueling 

stations and hydrogen vehicles were consulted 

(Groth et al. 2024; Groth, LaChance, and Harris 

2012; Stephens et al. 2009). The resulting failure 

modes obtained are presented in Table 3 in the 

discussion section. The failure mechanisms for 

each failure mode were also identified, obtaining 

with it a taxonomy to be used in HyCReD.  

 

2.3 Data sources from the station 
Several data types have been identified for QRA 

in hydrogen systems, like gas data (chemical 

information), system data (component count and 

configuration), system operating conditions, 

observed failures, and consequence data (Moradi 

and Groth 2019). However, as the station for this 

case study is currently under construction, there is 

no historical dataset available with the system 

operating conditions nor its failures.  

Nevertheless, the PCS of the station has 

already been set up and is currently collecting 

simulated data for testing purposes. In total, 109 

features are being collected for the hydrogen 

fueling experimental site, which are the 

following: 

� 19 pressure sensors (throughout the station) 

� 21 temperature sensors (throughout the station) 

� 9 H2 gas detectors (specific location in station 

is yet unknown) 

� 23 valve statuses (throughout the station) 

� 21 weather station sensors 

� 16 other testing signals  

 
2.4 Current methods for fault diagnosis 
We conducted a scientific literature survey to find 

the suitable methods that could be employed for 
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this framework. In particular, the search focused 

on studies that developed an automatic failure 

detection and diagnosis (FDD) methodology in 

engineering applications. Achieving a correct 

diagnosis by this framework provides the critical 

information necessary to log into HyCReD. 

Current FDD methodologies are categorized 

as model-based, knowledge-based and data-

driven methods (Chen et al. 2023). Analytical 

model FDD employ mathematical models 

representing the real system to identify faults by 

comparing their outputs with the real system. 

When a detailed mathematical model is not 

available, knowledge-based FDD is an option. A 

knowledge-based approach uses a knowledge 

base built with facts of the system, and an 

inference engine that applies reasoning methods 

to the known facts (Chi et al. 2022). Reasoning 

methods can be rule-based (expert systems) or 

ontology-based. 

In regards to data-driven approaches, fault 

detection can be categorized as supervised, semi-

supervised or unsupervised (Chen et al. 2023). All 

these methods require fault-free data to train the 

detection models, which learn to identify the 

normal operation of the system, while supervised 

and semi-supervised models also require fault 

data to learn the specific behaviors during a 

failure event. The data-driven diagnosis of a fault 

involves identifying or localizing the root cause 

of the failure, which is considered more 

challenging than detecting the fault given that 

different faults can lead to the same symptoms 

(Mirnaghi and Haghighat 2020).  

Bayesian Networks (BN) are one particular 

data-driven model that has become popular for 

fault diagnosis given their properties to 

incorporate system information through 

structured probabilistic conditional relations and 

for performing diagnostic inference based on a set 

of observations (evidence) (Cai, Huang, and Xie 

2017). A BN consists of a directed acyclic graph 

(DAG) with nodes and edges, where nodes 

represent a random variable to assess and edges 

modeling the probabilistic relationship between 

nodes. Each node has associated a conditional 

probability table (CPT) representing the 

probabilities given the state of the parent nodes. 

Nodes without parents are called root nodes their 

CPT is simply the probability distribution of the 

node. 

In the context of hydrogen fueling stations, 

a study by Lee et. al (Lee, Cho, and Choi 2021) 

developed a data-driven approach for fault 

detection using process variables (sensors) and 

status variables (component’s operational states). 

Their model could assess normality or 

abnormality during operation by assessing the 

likelihood of a target observation, however the 

diagnosis of the detected abnormal states was not 

further discussed.  

3. Failure event logging into HyCReD 
3.1 HyCReD digital logging tool 
The methodology for an automatic failure 

detection and logging into HyCReD needs to be 

divided into 3 stages: 1) collect the process data 

from the station, 2) detect failure events from the 

process data and identify the component or 

equipment that caused that fault, and 3) log the 

information regarding the event into HyCReD.  
For this purpose, a software package is 

developed with the aims to be used as a digital 

tool for the station. This tool is designed to be 

executed once per day, following the 3 stages 

defined in the methodology, for the data collected 

over a complete day of operation. Figure 1 

summarizes the flowchart of the digital tool. 

3.2 PCS data collection 
The data collection is done by requests to the API 

(Application Programming Interface) integrated 

into the PCS of the station, which is accessible 

only through a secure virtual private network 

(VPN). The requested data corresponds to the 

daily recordings of each relevant sensor for 

detecting failures, which are stored in the backup 

database of the PCS. This collected data is only 

used for analysis and it gets discarded after the 

tool has detected and diagnosed events. 

 

 

 

Figure 1: Flowchart of the HyCReD logging tool 
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3.3 Failure detection, diagnosis, and logging 
For the first implementation of this tool, the 

approach for failure detection is done by 

monitoring the process variables and assessing if 

they are outside the normal ranges defined by the 

station design. A process variable deviating from 

its expected range is recognized as a failure event 

to be diagnosed and logged into HyCReD. Only 

the pressures and temperatures measured 

throughout the station are analyzed in this first 

version of the tool.  

The detection of failure events is done 

through a lookup table which lists all the failures 

detectable, the process variable used to identify 

them and the range that defines that failure event. 

Using that information, the tool analyses the daily 

data and searches for any period within the limits 

that define a failure. Each entry in the table also 

summarizes the information needed to diagnose 

the event, which corresponds to the component 

that is most likely responsible to have caused that 

event, as well as its failure mode and failure 

mechanism.  

The current version of the tool can detect 16 

different failure events in the station: 13 

corresponding to pressure relief valves failing to 

operate, the overpressure or overtemperature of 

the hydrogen gas compressor, and insufficient 

heat transfer by the heat exchanger. Several other 

failure modes were recognized as detectable but 

would require more complex methods for 

detection. This is further discussed in Section 4. 

3.4 HyCReD logging procedure 
The full procedure for the automatic failure 

detection and logging done by the digital tool is 

the following:  

Step 1: Collect the daily data for the process 

variables.  

Step 2: For every potential failure listed in the 

lookup table, analyze if the process variable 

responsible for that failure is within the 

specific failure ranges.  

Step 3: If a failure is detected, retrieve from the 

lookup table the failure mode, mechanism 

and ID of the component that caused it. Use 

that to populate HyCReD fields #17 and #18 

with the event failure mode and mechanism. 

Step 4: Collect the details of the failed 

component from an internal table listing the 

technical information of the components. Use 

that to populate HyCReD fields #6 to #16 for 

the log. 

Step 5: If the failure event corresponded to a 

hydrogen leak, complete fields #21 to #25, 

and answer field #26 if it involved at 

hydrogen ignition (not addressed in current 

tool version).  

Step 6: Finally, populate fields #1 to #5 with the 

details of the facility, which are the same for 

every event in the hydrogen fueling station. 

Step 7: Upload log to HyCReD and internally 

log the execution to avoid the tool repeating 

the analysis. 

4. Discussion 
The HyCReD logging tool developed can detect 

failure events in the hydrogen fueling station and 

log that information under the HyCReD format. 

This tool will be implemented once the hydrogen 

fueling test site enters commission, after which a 

verification period is to be followed to assess its 

validity.  

This development will help to build a 

reliability database necessary for improving the 

accuracy of risk and reliability assessments of 

hydrogen infrastructure, particularly for hydrogen 

fueling stations. Furthermore, the automatic 

identification done by this tool of the component 

that caused a failure could improve the efficiency 

of corrective maintenance by providing 

information on the component that failed and the 

failure mode it encountered. Nevertheless, the 

automation achieved by the tool is limited only to 

the failure detection and diagnosis and it is not 

able to automate the logging of the maintenance 

service details asked in HyCReD, which will need 

to be manually added after it was completed. 

An important metric to consider for this tool 

is completeness of its detection and diagnosis 

capabilities, meaning how many of all possible 

failure events can be addressed by the tool. To 

assess this, the detectability and diagnosability of 

every failure mode were estimated based on the 

station system layout and the data available from 

the PCS, presenting this information in Table 3. 

This table also summarizes the number of 

component types (# C. type) that present each 

failure mode.  
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Table 3: Failure modes and their estimated detectability 

and diagnosability 

Failure modes 
# C. 

types 
Detectable Diagnosable 

Abnormal 

output-high 
6 Yes Yes 

Abnormal 

output-low 
5 Yes Yes 

Bent/warped/ 
damaged 

16 No No 

Contamination 15 No Partial 

Drift 2 Partial Partial 

Erratic output 5 Yes Partial 

External leak 

hydrogen 

15 Partial Partial 

External leak 

utility medium 

2 Partial Partial 

External rupture 

hydrogen 

15 Partial Partial 

External rupture 

utility medium 

1 Partial Partial 

Fail closed 2 Yes Yes 

Fail open 3 Yes Yes 

Fail to close 5 Yes Yes 

Fail to operate 11 Yes Partial 

Fail to stop 2 Yes Yes 

Insufficient heat 

transfer 

1 Yes Partial 

Internal leak 

hydrogen 

8 Partial Partial 

Internal leak 

utility medium 

2 Partial Partial 

Internal rupture 

hydrogen 

8 Partial Partial 

Internal rupture 

utility medium 

2 Partial Partial 

Noise 2 Yes Yes 

Overheating 4 Yes Yes 

Overspeed 1 Yes Yes 

Plugging 4 Yes Yes 

Restrict flow 9 Yes Partial 

Spurious 

operation 

3 Yes Yes 

Spurious stop 2 Yes Partial 

Underspeed 1 Yes Yes 

Vibration 2 Yes Yes 

Currently, 16 failure events coming from 4 

different failure modes on 3 different components 

are addressed by the tool. Most of the other failure 

modes are deemed to be detectable or partially 

detectable from the control logic of the PCS. Leak 

events of every kind are considered to be only 

partially detectable because the accurate 

localization of their origin is challenging, despite 

that the station is equipped with hydrogen gas 

detectors. This problem is becoming a growing 

research topic for hydrogen fueling stations (Zhao 

et al. 2021). The structural damage of components 

and contamination are the only failure modes that 

are considered to not be detectable from process 

data. 

5. Future work 
While this work has proposed a tool to address the 

lack of reliability data for hydrogen components, 

its scope is still limited to just a few failure events 

while critical failure modes are not yet 

considered. This may lead to an unbalanced 

representation of failure events in HyCReD, and 

its usefulness would be limited. Future work to 

expand the capacity and complexity of the failure 

event detection is a must for the digital tool.  

As presented in Table 3, the number of all 

possible failure events to address in the station 

may be too large to achieve in the short-term 

future. To prioritize the failure modes and 

components to be detected, the insights obtained 

from past reliability studies on hydrogen fueling 

station (Kurtz et al. 2020; Groth et al. 2024) could 

be used to focus first on highly unreliable 

components and on failure modes with an 

inherently high-risk. 

However, the detection and diagnosis of 

complex failure modes and mechanism would 

require a more complex approach. This could be 

done with BN models, as several properties make 

them ideal for this objective; they are able to 

integrate data from different sources under causal 

relationships, perform diagnostic inference with 

limited observations, and enable uncertainty 

analysis on its predictions. The identification of 

the failed component and characterization of the 

failure event can be done through backward 

inference on the BN using as evidence the data 

collected and additional information from the 

system components like operational setpoints and 

states. A BN model could also be developed to 

help localize the origin of a detected hydrogen 

release and potentially extend it to estimate the 

magnitude of the hydrogen release, which is 

necessary information to be recorded in HyCReD 

for events of this nature. Employing a model like 

this for real-time monitoring could also help with 

the operation of the station by reducing false 

alarms, particularly fire alarms which are subject 

to a high degree of false alarms (Festag 2016). 
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Two challenges for the development of 

these causal models are structuring the BN and 

quantifying its parameters. As in previous works, 

the structure of the BN can be based on the expert 

knowledge or by structure learning based on data 

(Cai, Huang, and Xie 2017). The former option is 

preferable in this case as it can be developed on 

the known system control procedure, component 

configuration and the cause and effect 

relationships between failure modes, symptoms, 

and failure mechanism. This approach has been 

demonstrated successfully in similar applications 

(Moradi et al. 2022; Lewis and Groth 2020; Hazra 

et al. 2024). On the other hand, the BN parameter 

modeling corresponds to quantifying the CPT of 

the nodes in the networks, which can be estimated 

from expert elicitation or by learning from 

process data. A combination of both may be 

required to fully quantify the BN models. 

Another aspect to consider for the 

development of BN models is the possibility for 

concurrent failures. Jun and Kim (Jun and Kim 

2017) defined five fault types able to be 

represented on a BN: catastrophic, degraded, 

common cause to faults (or symptoms), multiple 

causes to fault (or symptom), and cascading fault. 

To address this, they proposed a procedure with 

which to identify each type of failure.  

6. Conclusion 
In this paper we developed a digital tool that 

detects failure events in a hydrogen fueling station 

and automatically logs that information into the 

hydrogen component reliability database 

(HyCReD). Currently the tool can potentially 

detect 16 different failure events, and it is set to 

be implemented and validated in the hydrogen 

fueling test platform at the H2Safety@BAM 

Competence Center for safe hydrogen 

technologies. The total set of failure modes in the 

hydrogen station were identified and the methods 

available to address more complex failure events 

were discussed. Future work will include 

gathering an historical dataset and building and 

integrating more complex detection and diagnosis 

algorithms into the tool. 
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