

Contents

Preface	V
Organising Committee	vii
Contents	xi
Alfredo Ang Lecture	XXV
MS01 Computational Methods and Applications for Stochastic Engineering Dynamics	
Dynamic Analysis of Steel Hall Exhibiting Some Mechanical Uncertainties <i>R.Bredow, and M. Kaminski</i>	1 – 6
Survival Probability of Nonlinear Oscillators Subject to Combined Periodic and Stochastic Excitation Rongyue Zhu, Wei Lv, Yuanjin Zhang, and Fan Kong	7 – 12
Active Learning Framework for Estimating First-Passage Probability of Stochastic Wind-Excited Structural Systems J. Kim, S. Yi, and J. Song	13 - 17
Dynamic Response and Reliability Analysis of Long-span High-pier Rigid Bridge Subjected to Multi-support and Multi-component Ground Motion Zixin Liu, Zhangjun Liu, and Xinxin Ruan	18 – 21
Response of an MDOF Nonlinear System with Constraints Under Combined Deterministic and Non-stationary Stochastic Excitation <i>P. Ni, V. C. Fragkoulis, F. Kong, I. P. Mitseas, and M. Beer</i>	22 – 26
Stochastic Response Analysis of a Piezoelectric Harvesting Device Subjected to Non-stationary Wind Loading G. D. Pasparakis, V. C. Fragkoulis, F. Kong, and M. Beer	27 – 33
Failure Probability Estimation, a Short History: Concepts and Misconceptions K. Breitung	34 – 39
First-passage Probability Estimation of Stochastic Dynamic Systems by a Parametric Approach Chen Ding, Chao Dang, Matteo Broggi, and Michael Beer	40 – 46

Time-variant Reliability Analysis for High-dimensional Nonlinear Systems Under non-white Excitation based on the Globally-evolving-based Generalized Density Evolution Equation Meng-Ze Lyu, and Jian-Bing Chen	47 – 51
Stochastic Process Generation from Relaxed Power Spectra Utilising Stochastic Harmonic Functions Marco Behrendt, Marius Bittner, and Michael Beer	52 – 58
MS02 Data-driven Inverse Methods for Uncertainty Quantification	
Comparison of State of the Art Sampling-based Bayesian Updating Techniques M. B. Dodt, M. Kitahara, M. Broggi, and M. Beer	59 – 66
On-line Bayesian Model Updating and Model Selection of a Piece-wise Model for the Creep-growth Rate Prediction of a Nuclear Component Adolphus Lye, Alice Cicirello, and Edoardo Patelli	67 – 74
MS04 Digital Methods in the Lifecycle of Infrastructure Systems to Enhance Reliability of Operation	
Machine Learning Techniques for Intelligent Life Cycle Management <i>Y. Varabei, L. Lapidus, and T. Braml</i>	75 – 82
Obtaining Data from Concrete Structures J. Wimmer, and T. Braml	83 – 90
Drone-based Acquisition of as-built Models for the Automation of Processes within the Digital Management of Bridge Assets F. Kaufmann, T. Tschickardt, and C. Glock	91 – 98
Formulation and Comparison of Maintenance Strategies using BIM-based Life Cycle Analyses M. Müller, T. Zinke, and T.Ummenhofer	99 – 105
Computing Characteristics for the Availability of Paths and its Application to a Communication Network H.Schäbe, and S. Grüter	106 – 110
A Framework for Data and Structural Integrity Management for Support Structures in Offshore Wind Farms Based on Building Information Modelling L. Eichner, P. Gerards, R. Herrmann, R. Schneider, F. Hille, and M. Baeßler	111 – 117
DigiPark–Digitization in Parking Garage Maintenance C. Blut, and J. Blankenbach	118 – 124

MS05 Life-cycle Reliability of High-Speed Railway Structural System	
An Effective Method for Load and Resistance Factors Design Based on Third-moment Transformation <i>PP. Li, ZH. Lu, and YG. Zhao</i>	125 – 131
Interface Debonding Reliability of CRTS II Track Slab-CA Mortar Jun Wang, Zhao-Hui Lu, Xuan-Yi Zhang, and Yan-Gang Zhao	132 - 138
Updating the Reliability of Degrading Structures Based on the Method of Moments <i>YT. Lu, PP. Li, and YG. Zhao</i>	139 – 146
Time-Dependent Reliability Assessment Method for Horizontal Flexural Strength of the CRTS II Track Slab Chao-Huang Cai, Zhao-Hui Lu, and Yan-Gang Zhao	147 – 151
MS06 Machine Learning for Uncertianty Quantification and Structural Reliability	l
Physic-informed Probabilistic Analysis with Bayesian Machine Learning in Augmented Space Fangqi Hong, Pengfei Wei, Jingwen Song, Matthias G.R. Faes, Marcos A. Valdebenito, and Michael Beer	152 – 159
Estimation of Response Expectation Function under Hybrid Uncertainties by Parallel Bayesian Quadrature Optimization <i>C. Dang, P. Wei, M. Faes, and M. Beer</i>	160 – 165
Propagation of Imprecise Probability Descriptions via Machine Learning Based Optimization for Robust Reliability Analysis A. Cicirello	166 – 172
Uncertainty Quantification Over Spectral Estimation of Stochastic Processes Subject to Gapped Missing Data Using Variational Bayesian Inference <i>Yu Chen, Edoardo Patelli, Michael Beer, and Ben Edwards</i>	173 – 178
MS07 Maritime Safety and Smart Shipping	
Economic Losses Assessment of China's Ports Disruption Under Typhoon-induced Extreme Wind Zhenshiyi Tian,and Yi Zhang	179 – 186
AIS data-based Machine Learning for Unsupervised Route Planning of Maritime Autonomous Surface, Ships Huanhuan Li, Zaili Yang	187 - 193

MOSES Autonomous Tugboat Swarm Operation: Operational Scenarios, Requirements, and Architecture Ventikos N.P., Louzis K., Themelis N., Oikonomidou H., Monios N., Mantouvalos E., Kampourakis M., Chondronasios A., Kokkorikos S., Chatzidouros E., and Kotsidis E.A.	194 - 201
A Human Reliability Assessment Model for the Cognitive Process of MASS Shore-based Operator Applied, to Dynamic Probabilistic Risk Assessment Platform Tengfei wang, Mihai A. Diaconeasa, Mingyang Zhang, Yantao Zhu, and Su Han	202 – 209
A Systems Engineering Framework for the Safety Analysis of MASS Nikolaos P. Ventikos, and Alexandros Koimtzoglou	210 – 217
Risk and Reliability Analysis for MASS A Bibliometric Review of Literature from 2015 to 2021 Zhihong Li, Di Zhang, Bing Han, and Chengpeng Wan	218 – 225
MS08 Mini Symposium on Uncertainty-informed Asset Management	
Maintenance Decision-making for Infrastructure Systems Using, Clustering-based Cooperative Multi-Agent Deep Q-Network D. Lee, J. Song	226 – 230
Analysis of Inspection Records to Evaluate the Prevalence of Ageing in the UK's Industrial Asset, Base <i>C. Brown, S. Ferson, and M. de Angelis</i>	231 – 237
MS09 Model Identification and Structural Reliability Analysis with Complex and/or Combined Uncertainty for Structural Dynamic Proble under Seismic Excitation	m
On the Distribution of Structural Demand in Fragility Analysis Fang-Wen Geand Yan-Gang Zhao	238 – 243
From "Structural Health Monitoring" to "Building Health Care" -Opportunities and Challenges- Lee, Sangwon, and Itoi, Tatsuya	244 – 248
Structural Identification Based on Merging Particle Filter for Earthquake Response <i>Y.Nomura</i>	249 – 256

Simulation of Design Response Compatible Acceleration Time Histories Considering the Fourier Phase Uncertainty and Their Application for Dynamic Analysis of Srtucture System T. Sato	257 – 264
Assessing Updated Seismic Performance of Existing Structures by Stochastic Model Updating M. Kitahara, S. Bi, M. Broggiand M. Beer	265 – 270
Seismic Resilience Assessment of Steel Frames Yan-Gang Zhao, and Fang-Wen Ge	271 – 276
Frequency Comparison of the Pulse-like and Non-pulse Ground Motions G. Chen, Y. Liu, and M. Beer	277 – 281
Effect of Column Height on the Reliability of Seismically Isolated Bridges H. Matsuzaki	282 – 288
Evaluation of the Effect of Bearing Deterioration on the Seismic Hazard of the Bridge S. Yotsui, M. Yasuda, and K. Izuno	289 – 295
MS10 Non-deterministic Model Updating and Health Monitoring with Uncertainty Treatment	
Hierarchical Bayesian Learning for Structural Damage Identification Xinyu Jia, and Costas Papadimitriou	296 – 300
MS11 Novel Data Science for Disaster Prevention and Resilience of Civinfrastructures	il
Multi-scale and Multi-performance Urban Monitoring Based on Data-driven Techniques <i>T. Yaoyama, T. Hida, T. Itoiand T. Takada</i>	301 – 308
Model Parameter Updating of the Seismic-Isolated Bridge Pier Using Modified TMCMC T.Kitahara, M. Kitahara, and M. Beer	309 - 312
Resilience Assessment of Road Network Subjected to Ground Motion and Tsunami Caused by the, Earthquake Along the Japan Trench H. Ishibashi, M. Akiyamaand S. Koshimura	313 - 317
Integrating Physical Prediction Methods and AI-based Satellite Data Analysis Methods, in Earthquake Damage Estimation <i>H. Ishibashi, M. Akiyamaand S. Koshimura</i>	318 – 322

Classification of Power Spectra from Data sets with High Spectral Variance for Reliability, Analysis of Dynamic Structures Marco Behrendt, Masaru Kitahara, Takeshi Kitahara, Liam Comerford, and Michael Beer	323 - 328
Synthesis of Design Ground Motion for Nonlinear Analysis with Features Identified from, Records Satisfying Specified Condition <i>Di Lin, and Riki Honda</i>	329 – 336
Improvement on Resilience of Bridge Structure by Rc column, Exhibiting Self-Centering Mechanism only During the Recovery Phase K.Uemura, and Y. Takahashi	337 – 344
MS12 Optimal Structural Design under Uncertainty	
Optimal Shell Design with Polymorphic Uncertain Parameters <i>M. Fina, C. Lauff, and W. Wagner</i>	345 – 349
A Bayesian Framework for Multiobjective Optimization of Stochastic Dynamical Systems H. Jensen, D. Jerez, and C. Figueroa	350 – 356
Robust Multi-fidelity Optimization Approach Exploiting Data-driven, Non-linear Model Order <i>C. Czech, A. Kaps, and F. Duddeck</i>	357 – 363
Reliability of Multi story CLT Shear Wall Structure Considering Connection Uncertainty John Thedy, Kuo-Wei Liao, and Sidi Mohammed Elachachi	364 – 368
Estimation of First Excursion Probability in Stochastic Linear Dynamics by means of, Multidomain Line Sampling M. Valdebenito, P. Wei, J. Song, M. Beerand M. Broggi	369 – 372
Adaptive Surrogate Modeling Approach for Structural Optimization Under Uncertainties P. Edler, S. Freitag, S. Schoen, and G. Meschke	373 – 380
MS13 Probabilistic Approaches in Geotechnical Engineering	
Reliability Assessment of Quay Walls Using Adaptive Meta-Modelling T. Schweckendiek, A.P van den Eijnden, M. Post, A.A. Roubos, and J. de Greef	381 – 386
Quantitative Risk Assessment of Rainfall-Induced Landslides Using Random Finite Element and Material Point Methods (RFE-MPM) with Hydro-Mechanical Coupling <i>X. Liu, and Y. Wang</i>	387 – 391

Optimization of LCC for Soil Improvement Using Bayesian Statistical Decision Theory <i>J. Spross, S. Hintze, and S. Larsson</i>	392 – 397
Hierarchical Bayesian Modelling for Geotechnical Parameter Derivation A. Mavritsakis, T. Schweckendiek, A. M. Teixeira, and E. Smyrniou	398 – 405
Bayesian Estimation for Subsurface Models using Spike-and-Slab Prior <i>T. Shuku, and K.K. Phoon</i>	406 – 409
Application of Response Surface Method for Risk Evaluation of Earth-fill Dams S. Nishimura, T. Tateishi, T. Shibata, S. Kuroda, T. Kato, K. Kuribayashi, and N. Tanaya	410 – 412
Using the Ensemble Data Assimilation for Stiffness Evaluation of an Embankment Yuxiang Ren, Shinichi Nishimura, Toshifumi Shibata, and Takayuki Shuku	413 – 418
Observation Update of Model Parameters and Limit State Probabilities of Consolidation Settlement Prediction using Data Assimilation <i>T. Nakamura, I. Yoshida and Hans T. Shuku</i>	419 – 425
Study on Autocorrelation Model for Spatial Distribution of Soil Properties using Gaussian Process Regression <i>Y. Tomizawa, I. Yoshida and Y.Otake</i>	426 – 431
Full Probabilistic Analysis with FEM for the Retaining Wall of a Deep Excavation <i>A. Ene, T. Schweckendiek and H. Popa</i>	432 – 438
Random Failure Mechanism Method in Optimal Borehole Placement for Shallow Foundation Design Under Spatially Variable Conditions <i>M. Chwala, D. J. Jerez, H. A. Jensen and M. Beer</i>	439 – 446
Probabilistic Foundation Settlement using A Hardening Soil Model on Layered and Spatially Variable Soil Teshager <i>D.K., Chwala M. and Pula W.</i>	447 – 453
3D Data-driven Site Characterization using Geotechnical Lasso with Basis Functions K.K. Phoon, and T. Shuku	454 – 459

MS14 Reliability Analysis and Prognostics for Complex Systems

Remaining Useful Life Estimation of units Characterized by A Bathtub-Shaped 460 – 467 Degradation Rate in The Presence of Random Effects M. Giorgio, A. Piscopo and G. Pulcini

Understanding the Impact of the Operational Faults on Building Energy Performance Ashraf Alghanmi, Akilu Yunusa-Kaltungo and Rodger Edwards	468 – 474
A New Method on System Reliability Analysis based on Survival Signature Theory	475 – 482
Yide Zheng, Yi Zhang and Jiarui Lin	
Spatio-temporal Monitoring of Image Degradation for Manufacturing Process Munwon Lim and Suk Joo Bae	483 – 484
MS15 Reliability Analysis under Aleatoric and Epistemic Uncertainty	
Effect of Vertical Seismic on Dynamic Reliability Analysis of 2D Slopes Considering the Spatial Variability of Soil Parameters Yichuan Li, Rui Pang and Bin Xu	485 – 489
Interval-Valued Probabilities: Reasons and Benefits of Application to Human Cognitive Reliability Model V. Krymsky, N. Solodilova and F. Akhmedzhanov	490 – 497
Bounding Failure Probabilities in Imprecise Stochastic FE models Matthias G. R. Faes, Marc Fina, Marcos A. Valdebenito, Celine Lauff, Werner Wagner, Steffen Freitag and Michael Beer	498 – 501
Estimation of Second-order Statistics of Buckling Loads Applying Linear and Nonlinear Analysis Marc Fina, Matthias G. R. Faes, Marcos A. Valdebenito, Werner Wagner, Matteo Broggi, Michael Beer and Steffen Freitag	502 – 507
Random-interval Hybrid Reliability Analysis by a Parallel Active Learning Kriging Method with a Pseudo Weighted Expected Risk Function <i>J. Liu, C. Dang and M. Beer</i>	508 - 514
MS16 Reliability and Resilience of Critical Infrastructure Systems and Networks	
Use of Generalized Lambda Models For Seismic Fragility Analysis <i>X. Zhu, M. Broccardo and B. Sudret</i>	515 - 521
Evaluation of Relative Importance of Network Components by System-reliability-based Disaster Resilience Analysis <i>Y. Kwon and J. Song</i>	522 – 529
Resilience Decision-Making for Complex and Substructured Systems J. Salomon, J. Behrensdorf, N. Winnewisser, M. Broggi and M. Beer	530 – 537

Active Learning for System Reliability Analysis Using PC-Kriging, Subset Simulation and Sensitivity Analysis <i>P. Parisi, M. Moustapha, S. Marelli and B. Sudret</i>	538 – 545
MS17 Resilience and Reliability Modelling of Critical Assets in the Age Disasters & Pandemics	of
A Resilience-based Asset Management Strategy Approach Using the Analytical Hierarchy Process <i>A. Karar, A. Labib and D. Jones</i>	546 – 553
Development of a Framework for Implementing Asset Register Solutions <i>L. English and A. Yunusa-Kaltungo</i>	554 – 559
An Analysis of the Practicality of Implementing Asset Management Systems in the Context of a Complex Cultural Environment <i>G. Rivera, A. Yunusa-Kaltungo, R.M. Jungudo, B. Ali-Gombe and L. English</i>	560 – 567
Preliminary Exploration of Recursive Feature Elimination and Empirical Decomposition for Building Energy Consumption Prediction Qingyao Qiao, Akilu Yunusa-Kaltungo and Rodger Edwards	568 – 573
Reliability Assessment and Optimal Maintenance Scheduling of a Photovoltaic System: A Nigerian Case Study Aisha Sa'ad, Aime Nyoungue, Zied Hajej, Akilu Yunusa-Kaltingo and Cyril Amaghionyeodiwe	574 – 578
MS18 Resilience Modeling for Risk-Informed Decision Support	
Interdependent Households-Buildings-Networks Community-Level Post-Hazard Functionality Assessment Methodology Omar M. Nofal, Nathanael Rosenheim, Jayant Patil, Xiangnan Zhou, John W. van de Lindt, Leonardo Duenas-Osorio, and Eun Jeong Cha	579 – 585
Gaussian Process-based Optimization Framework for Community Building Portfolios Considering Resilience and Sustainability Objectives <i>G.A. Anwar and Y. Dong</i>	586 – 591
Comparative Retrofit Prioritization Schemes for Electric Power Networks: Application to the community in Seaside, OR A. L. Beck, H. Talebiyan, E. J. Cha and L. Duenas-Osorio	592 – 599
Reliability Analysis of Landslides based on the Random Finite Element Method Chengxin. Feng, Matteo. Broggi and Michael. Beer	600 – 605

MS19 Risk-based Damage Assessment and Prediction of Infrastructure Systems Subjected to Natural Hazards

An Explicit Approach to Estimating Cumulative Tropical Cyclone Damage Cao Wang and Hao Zhang	606 – 613
Regression-based Estimation of Uncertainties in Engineering Demand Parameters of Building Structures for Regional Seismic Loss Assessment <i>C. Kang, O. Kwon and J. Song</i>	614 – 620
Multi-Hazard Power Resilience Modelling using Synthetically Generated Distribution Networks <i>C.Zhai, J. P. S. Chhabra, Y. Kim, S. D. Guikema and S. Patel</i>	621 – 628
Simulation and Risk Evaluation of Possible Superstorms Hitting Europe's North Sea Coast Y. Sun, M. Bittner, Y. Zhang and M. Beer	629 – 634
Practical Method for Estimating Acceleration Fourier Amplitude Spectrum at an Arbitrary Point M. Sugai, Y. Mori and Y. Mizutani	635 – 639
MS20 Risk-informed Digital Twins of Buildings, Bridges, Offshore Structures: Frameworks, Methods, and Tools	
Sourcing Uncertainty Data by Perception, Experience and Opinion–Methods and Procedures, Advantages and Challenges <i>J. Mohammadi</i>	640 – 647
An Open-source Digital Twin Operational Platform for the Transparent Management of Information Matthew Bonney, Marco de Angelis, Mattia Dal Borgo and David Wagg	648 – 653
Feature-oriented Digital Twins for Life Cycle Phases Using the Example of Reliable Museum Analytics W. Luther, E. Auer, D. Sacher and N. Baloian	654 – 661
Utility of Information (UoI) for Probabilistic Fatigue Monitoring <i>U. Alibrandi, G. Du, S.D.R. Amador and R. Brincker</i>	662 – 666
Quantum-like Uncertainty Quantification (QUQ) for Urban Sustainability and Resilience <i>U. Alibrandi, E. Zio and K.M. Mosalam</i>	667 – 676

MS21 Stochastic Finite Element Methods and their Applications on Model Updating	
A New Homotopy Approach for Stochastic Static Model Updating with Large Uncertain Measurement Errors Zhifeng Wu, Bin Huang, Jian Fan and Kaiyi Xue	677 – 683
Homotopy Stochastic Residual Error Method for Structural Elastic Stability Analysis Heng Zhang and Bin Huang	684 – 691
A New Method for the Response of A Random Plate Yejun Li and B. Huang	692 – 694
A Sparse Grid Stochastic Collocation Method for Structural Reliability Analysis <i>J. He, YH. Duan and MJ. Wang</i>	695 – 697
A New Stochastic Model Updating Method Based on Improved Cross-Model Cross-Mode Technique Hui Chen and Bin Huang	698 – 703
MS23 Reliability and Maintenance for Internet of ThinGSand 5G+ Networks	
Defending from Supply Chain Attacks Fabrizio Baiardi	704 – 709
Development and Application of A Cyber-Physical System Resilience Assessment Framework B. Cassottana and G. Sansavini	710 – 718
Modeling the System-Level Reliability towards a Convergence of Communication, Computing and Control Bin Han and Hans D. Schotten	719 – 723
GS01 Structural Reliability	
Fire Resistance of Simple Steel Beam-Probability-Based Approach to Evaluation M. Maslak	724 – 729
The Fatigue Cumulative Damage and Reliability Analysis of Subway Bogie Structure Based on the Duration of Stochastic Process Exceeding Threshold Zhenhao Zhang, Mengmeng Tao, Wenbiao Li, and Hesheng Li	730 – 735
The Proposed Rank-based Active Learning Kriging for Efficient Structural Reliability Analysis Using Weighted Average Simulation Method <i>K. Sharifi-Nik, H. Ghohani-Arab, M. Rashki, and MGR. Faes</i>	736 – 743

GS03 Risk Assessment and Management

Achieving Visibility and Efficiency in Reliability Management by Integrating RAM Analysis with Modern IoT Platform Miikka Tammi,Tatu Pekkarinen, and Veli-Pekka Salo	744 – 749
Probability Distribution of Vibration Isolation Area in Phonon Crystal Arrays with Finite Length Xiaolei Li, Xuhong Zhou, and Yongtao Bai	750 – 754
Dempster-Shafer Theory Based Uncertainty Models for Assessing Hereditary, BRCA1/2-Related Cancer Risk <i>E. Auer, and W. Luther</i>	755 – 762
A Framework for Airport Functional Downtime Estimation due to Structural Impacts under Natural Hazards Jaskanwal P. S. Chhabra, Ph.D., Zhengxiang Yi, Ph.D., Youngsuk Kim, Ph.D., Deepak R. Pant, Ph.D., Greg Brunelle, M.S., M.A., and Shabaz Patel, M.S.	763 – 770
Approximation Representation of Observed Strong Ground Motion Distribution using Mode Synthesis of Predicted Distributions. <i>Y.Takahashi, and N. Nojima</i>	771 – 778
A Practical Framework for Evaluating the Seismic Resilience of Ports D. R. Pant, Y. Kim, J. P. S. Chhabra, and S. Patel	779 – 784
Oil spill preparedness: Modelling Challenges and Implications for Decision-making <i>E.P. Ford, H.P. Lohne, and J.T. Selvik</i>	785 – 792
GS05 Design under Uncertainty	
The Log-Rayleigh Distribution for Local Maxima of spectrally Represented Log-normal Processes Jan Grashorn, Marius Bittner, Cao Wang, and Michael Beer	763 – 770
GS06 Prognostics and Maintenance	
Impact on Performances of a Condition-based Maintenance Policy of Misspecification of Gamma with Inverse Gaussian Degradation Process Nicola Esposito, Bruno Castanier, Massimiliano Giorgio	771 – 778
An Ontology for an Epigenetics Approach to Prognostics and Health Management A. Ruvinsky, M. Seale, C. Salter, and N. Garcia-Reyero	779 – 784

GS07 Health Monitoring and System Identification

Identification of Material Parameters from Full-Field Displacement Data Using	813 - 820
Physics-Informed Neural Networks	
D. Anton. and H. Wessels	

GS014 Other Topics

Function-oriented Seismic Performance Assessment of Complex Systems	821 – 825
Zuo Haopeng, Shang Qingxue, Li Jichao, and Wang Tao	
Author Index	827-830