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Abstract

For the condition assessment of existing infrastructure buildings the current parameters of the building material, such as the Young’s
modulus and Poisson’s ratio, are of great interest. These parameters indicate damage or material degradation, since they reflect the
resistance of the structures to external impacts. Provided the displacement field data is available, the material parameters can be identified
by solving the momentum equation inversely. It was recently shown that there is a method in the growing field of scientific machine
learning, known as physics-informed neural networks [1], that is particularly suitable for the inverse solution of partial differential
equations. In contrast to purely data-driven approaches, physics-informed neural networks do not only use the displacement data but
also the physics behind the data formulated as partial differential equation. It has been shown that physics-informed neural networks
can in principle be used to identify material parameters [2], [3]. In the present paper, we first develop a three-stage adaptation of the
method to realistic one-dimensional applications. Second, we verify the adapted method on two-dimensional displacement data. We
conclude the paper with an outlook on ongoing and future work to further improve the method.
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1. Introduction
Continuous structural health monitoring is the prerequi-

site of a reliable prediction of the remaining service life
of infrastructure buildings [4], [5]. When designing new
infrastructure buildings, it is assumed that both the building
structure and material do not age during service life. This
assumption is incorrect as in reality, the material ages due
to chemical and physical processes. These processes in turn
result in a decreasing resistance of the building structure to
external impacts. At the same time, the external impact
to the building structure, e.g. traffic load, often increases
more than it was assumed during the design phase. By using
monitoring systems, on the other hand, the actual condition
of the infrastructure building can be determined. From the
monitored evolution of the building structure condition and
the impacts, a forecast of the remaining service life can
then be made. In addition, the monitored evolution of the
infrastructure condition can be used as a basis for decisions
on maintenance or reinforcement measures.

Therefore, the identification of material parameters is
of great interest for the condition assessment of existing
infrastructure buildings. Material degradation usually leads
to a decrease in the material stiffness that in turn results in
a decreased resistance of the building structure. In the
present paper, our investigations focus on steel structures
and we assume linear-elastic material behaviour. Thus,
the material condition of steel is, among others, directly
reflected by Young’s modulus and Poisson’s ratio.

Provided that the displacement data can be measured,
e.g. by digital image correlation (DIC), the material pa-
rameters of interest can be identified by solving an inverse
problem. The underlying equation of this inverse problem
is the momentum equation that is a fundamental physical
principle. Since the momentum equation is a partial differ-
ential equation (PDE), identifying the material parameters
from the momentum equation can be formulated as a PDE
constrained optimization problem.

While numerical methods such as the finite element
∗E-Mail: anton@irmb.tu-bs.de

method (FEM) have proven successful for the forward so-
lution of PDEs, these methods often reach their limits for
inverse problems. In [6], two different approaches for solv-
ing inverse problems using FEM were compared: First, the
parameter field to be identified was bound to the discretiza-
tion of the domain used in FEM. Second, the parameter
field was globally represented by an artificial neural net-
work (ANN). Even thought, the authors conducted only
a qualitative comparison, some capabilities of ANNs and
some limitations of FEM for solving inverse problems were
demonstrated. It could be shown, that ANNs are insensitive
to noise and could better deal with incomplete data.

In the meanwhile, it was recently shown that physics-
informed neural networks (PINNs) [1] are particularly suit-
able for solving PDEs inversely. The idea behind this
method goes back to the 1990s [7], [8]. However, it has
become applicable only recently due to developments in au-
tomatic differentiation [9], advanced software frameworks
and libraries for machine learning applications and more
powerful hardware such as GPUs and TPUs. In contrast to
purely data-driven approaches, instead of using only mea-
surement data, PINNs also make use of prior knowledge.
This prior knowledge includes the physical laws behind our
observations which are known to us in many engineering
problems. In addition, PINNs can also be applied to noisy
measurement data as well as to high dimensional problems.

In engineering and science, PINNs have already been
applied to inverse problems from versatile fields, includ-
ing the simulation of unsaturated groundwater flow [10],
biomechanics [11], nano-optics and meta materials [12]
as well as damage mechanics [13], to name only a few
examples. Also in the field of solid mechanics, PINNs
were used to identify model parameters for linear-elastic
and nonlinear-elastoplastic material models from synthetic
data [2]. In contrast to the present work, the authors have
assumed that for solving the inverse problem, apart from
the displacement data, also stress data is available. Addi-
tionally, in the linear-elastic case the Lamé constants were
set to 𝜆 = 1.0 and 𝜇 = 0.5. The assumptions made for the
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Lamé constants are not realistic, when the material at hand
is, e.g., steel with a Young’s modulus of 210, 000 𝑁

𝑚𝑚2 and
a Poisson’s ratio of 0.3. Furthermore, in [3], PINNs were
already applied to identify the parameter of an inhomo-
geneous, incompressible, hyperelastic material only from
displacement data. Since the investigated material was in-
homogeneous, for the shear modulus a parameter field has
to be learned which was approximated by another ANN.
However, even in this application, the true shear modulus
was in the range [0.15, 0.37] which is not comparable to the
realistic shear modulus of steel. Both for the investigations
in [2] and [3], the domain considered was a unit square. In
summary, the previous works have shown that PINNs can in
principle be successfully applied to inverse problems and in
particular for material parameter identification. However,
the simplifying assumptions made in the literature are not
comparative to the real-world inverse problem, where the
material parameters of steel are to be identified from real
DIC data.

Previous investigations of our group have focused on
PINNs for solving forward problems [14], [15]. The pur-
pose of this work is to adapt the method to the identification
of the material parameters of steel from DIC data for the
linear-elastic case. It is demonstrated that the method fails
without further adaptions in real-world problems in struc-
tural mechanics. The reason for this is that the inverse
problem needs to be conditioned on at least three differ-
ent stages. For these three stages, we develop conditioning
approaches for realistic one-dimensional applications and
verify the effectiveness of the adapted method using syn-
thetic displacement data.

The remainder of this paper is organized as follows: In
sec. 2 the momentum equation and the governing equations
of linear elasticity are reviewed. Sec. 3 provides a brief
introduction to physics-informed neural networks (PINNs)
for solving inverse problems. In sec. 4, first the typical
failure modes that occur when applying PINNs to realistic
displacement data are identified. Based on our observa-
tions, the method is then step by step adapted and verified
using realistic one-dimensional displacement data. In sec.
5 we apply the adapted method to two-dimensional dis-
placement data. Finally, we conclude our investigations in
sec. 6 and point out directions of further research.

2. Momentum equation and governing equations of
linear elasticity
Material parameters can be identified from displacement

data by solving the momentum equation inversely. The
strong form of the momentum equation can be derived as

∇ · 𝝈(𝒙) + 𝒇 (𝒙) = 0, 𝒙 ∈ Ω. (1)

Here, ∇ denotes the nabla operator, 𝝈(𝒙) the stress tensor
and 𝒇 (𝒙) a vector field describing the volume forces. The
solution of eq. 1 must satisfy the boundary conditions and
the strong form of the PDE at all points 𝒙 in the domain Ω.

The constitutive equation for linear-elastic, homogeneous
material is defined as

𝝈(𝒙) = 𝜆 𝑡𝑟 (𝜺(𝒙))𝑰 + 2𝜇𝜺(𝒙), 𝒙 ∈ Ω, (2)

where 𝑡𝑟 () is the trace operator and 𝑰 the second order iden-
tity tensor. 𝜆 and 𝜇 are Lamé’s first and second constants
depending on the Young’s modulus 𝐸 and the Poisson’s
ratio 𝜈 by

𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈)
, 𝜇 =

𝐸

2(1 + 𝜈)
. (3)

The strain tensor 𝜺(𝒙) can be calculated from the dis-
placement vector field 𝒖(𝒙) as follows

𝜺(𝒙) =
1
2
(∇𝒖(𝒙) + ∇𝒖(𝒙)𝑇 ). (4)

Hence, the momentum equation provides the relation be-
tween the displacement field, i.e., its second partial deriva-
tives, and the material parameters which are Young’s mod-
ulus and Poisson’s ratio.

3. Physics-informed neural networks
3.1. Artificial neural networks are universal function

approximators
Artificial neural networks (ANNs) are global, smooth

function approximators. Provided that an ANN has a suf-
ficient number of parameters, it can approximate any con-
tinuous function to an arbitrarily small error [16], [17]. By
training the ANN, its parameters are adjusted with the aim
that the ANN approximates the hidden function as well as
possible. Thus, the training of ANNs is an optimization
problem where a cost function has to be minimized. In
supervised learning, this cost function gives a measure of
how well the predictions of the ANN match the output of
the labelled training data. For optimization, usually gradi-
ent based optimization algorithms are used. The gradient
of the loss function according to the ANN parameters can
be obtained using automatic differentiation [9].

An ANN consists of a high number of neurons which
are the computational units, typically arranged in an in-
put, an output and any number of hidden layers. In a fully
connected feed-forward ANN, the neurons of each two suc-
cessive layers are connected while each connection is given
a weight. In addition, a bias is assigned to all neurons in
the hidden layers and the output layer. Weights and biases
compose the trainable parameters of a feed-forward ANN.
The schematic structure of an ANN is shown in fig. 1.
From a mathematical point of view, an ANN is a highly
parameterized, composed function that defines a mapping
R
𝑁 → R𝑀 from an input vector to an output vector.
In all neurons except input neurons, the activity of the

neuron is calculated from the weighted input to the neuron.
While usually sigmoid functions, rectified linear units or
the hyperbolic tangent are chosen as activation function in
hidden neurons, in regression tasks, linear functions are
often used in the output neurons.

For further explanations, we now introduce the notation
applied in the following. We consider an ANN where layer
0 is the input layer and layer 𝐿 the output layer. This
ANN consists of 𝐿 + 1 layers in total and 𝐿 − 1 hidden
layers. The bias of neuron 𝑗 in layer 𝑙 is denoted as 𝑏𝑙𝑗 .
Considering a whole layer, the biases of all neurons of layer
𝑙 can be combined in a vector denoted as 𝒃𝑙 . Following
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Figure 1. Schematic representation of a fully connected feed-
forward ANN according to [6].

this principle, the weight of the connection between neuron
𝑘 in layer 𝑙 − 1 and neuron 𝑗 in layer 𝑙 is denoted as 𝑤𝑙

𝑗𝑘 ,
whereas all weights for the connections between layer 𝑙 − 1
and 𝑙 can be combined in the weight matrix𝑾𝑙 . Throughout
this paper, within each layer the same activation function is
used. The activation function in layer 𝑙 is then denoted as
𝜎𝑙 for a single neuron and 𝝈𝑙 for the whole layer. Finally,
the output of the neuron 𝑗 in layer 𝑙 is 𝑦𝑙𝑗 and the output of
layer 𝑙 can be combined in 𝒚𝑙 .

According to this notation we can define the ANN output
as a function of the input in a recursive formulation. The
weighted input of neuron 𝑗 in layer 𝑙 is defined as

𝑧𝑙𝑗 =
∑

𝑘

𝑤𝑙
𝑗𝑘𝑦

𝑙−1
𝑘 + 𝑏𝑙𝑗 , 𝑙 ≠ 0, (5)

where 𝑦𝑙−1
𝑘 in eq. 5 is given by

𝑦𝑙−1
𝑘 = 𝜎𝑙−1 (𝑧𝑙−1

𝑘 ). (6)

By inserting eq. 6 to eq. 5 and rewriting the result in
symbolic notation, we obtain

𝒛𝑙 = 𝑾𝑙𝝈𝑙−1 (𝒛𝑙−1) + 𝒃𝑙 , 𝑙 ≠ 0, (7)

where 𝝈𝑙−1 is applied elementwise.
Starting from the ANN output 𝒚𝐿 the recursive definition

terminates with the input vector 𝒙. Since we do not use
any activation function in the input layer, for the input layer
applies

𝝈0 (𝒛0) = 𝒙. (8)

Given eq. 5 - 8, the output of a feed-forward ANN as a
function of the input 𝒙 can ultimately be defined recursively
as follows:

𝒚𝐿 = 𝝈𝐿 (𝒛𝐿)

𝒛𝐿 = 𝑾𝐿𝝈𝐿−1 (𝒛𝐿−1) + 𝒃𝐿

𝒛𝐿−1 = 𝑾𝐿−1𝝈𝐿−2 (𝒛𝐿−2) + 𝒃𝐿−1

...

𝒛2 = 𝑾2𝝈1 (𝒛1) + 𝒃2

𝒛1 = 𝑾1𝒙 + 𝒃1.

(9)

For a more in-depth introduction to deep learning, please

refer to standard textbooks, e.g. [18].

3.2. Incorporating prior knowledge results in better
generalization performance

In contrast to purely data-driven approaches, physics-
informed neural networks (PINNs) are not trained by using
only labelled training data but also by leveraging available
prior knowledge [1]. In the forward problem, the physical
laws are known and encoded in a PDE, but the solution
of this PDE is unknown. The ANN, on the other hand,
is a function approximator and acts as an approximation
of the PDE solution. By adding regularizing terms to the
loss function which further constrain the solution space,
the ANN is enforced to satisfy the governing PDE. Ulti-
mately, incorporating prior knowledge does not only reduce
the amount of required data but also results in better gener-
alization performance [19].

In the following, we consider a time-independent, non-
linear PDE parameterized by 𝝀 and defined onΩ ⊂ R𝑑 with
suitable boundary conditions on 𝜕Ω with the general form

𝑓 (𝒙,
𝜕𝑢

𝜕𝑥1
, ...,

𝜕𝑢

𝜕𝑥𝑑
;

𝜕2𝑢

𝜕𝑥1𝜕𝑥1
, ...,

𝜕2𝑢

𝜕𝑥1𝜕𝑥𝑑
; ...; 𝝀) = 0,

𝒙 ∈ Ω,
(10)

where 𝑢(𝒙) is the hidden solution of eq. 10. The boundary
conditions could be Dirichlet, Neumann, Robin or periodic
boundary conditions.

The inclusion of prior knowledge succeeds by embedding
the governing PDE in the loss function. For solving the
PDE, the first step is to approximate the hidden solution by
an ANN �̂�(𝒙, 𝜽). In the next step, the loss function of the
forward problem in its general form is defined as

L(𝜽) := L𝑟 (𝜽) + L𝑑𝑏 (𝜽) + L𝑑𝑜 (𝜽)

L𝑟 (𝜽) =
1
𝑁𝑟

𝑁𝑟∑

𝑘=1
[𝑟]2

L𝑑𝑏 (𝜽) =
1
𝑁𝑏

𝑁𝑏∑

𝑘=1
[�̂�(𝒙𝑘𝑏; 𝜽) − 𝑢𝑘𝑏]

2

L𝑑𝑜 (𝜽) =
1
𝑁𝑜

𝑁𝑜∑

𝑘=1
[�̂�(𝒙𝑘𝑜; 𝜽) − 𝑢𝑘𝑜]

2

(11)

with the PDE residual calculated as

𝑟 = 𝑓 (𝒙,
𝜕�̂�

𝜕𝑥1
, ...,

𝜕�̂�

𝜕𝑥𝑑
;

𝜕2�̂�

𝜕𝑥1𝜕𝑥1
, ...,

𝜕2�̂�

𝜕𝑥1𝜕𝑥𝑑
; ...; 𝝀). (12)

Here, {𝑥𝑘𝑏, 𝑢
𝑘
𝑏}

𝑁𝑏

𝑘=1 and {𝑥𝑘𝑜 , 𝑢
𝑘
𝑜}

𝑁𝑜

𝑘=1 are the sets of labelled
training data for the boundary conditions and observations,
respectively. When balancing of the loss function becomes
necessary, the loss terms in eq. 11 can additionally be
weighted by weights 𝜆𝑟 , 𝜆𝑑𝑏 and 𝜆𝑑𝑜 , respectively. To
calculate the residual 𝑟 from eq. 12, the partial derivatives
of the ANN �̂�(𝒙, 𝜽) can be determined using automatic
differentiation. The forward problem is then solved by
searching the parameters 𝜽∗ of the ANN that minimize the
loss function defined in eq. 11. Finally, approximating
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the hidden PDE solution by an ANN following the PINN
approach described above is an optimization problem which
can be formulated as

𝜽∗ = arg min
𝜽

L(𝜽) (13)

In inverse problems, the objective is usually the identifica-
tion of the PDE parameters 𝝀. Either the solution of the
PDE is known or at least some observations are available in
the form of a set of data samples {𝑥𝑘𝑜 , 𝑢𝑘𝑜}

𝑁𝑜

𝑘=1. Therefore, for
solving inverse problems, two changes must be made to the
previous formulation. First, the loss function defined in eq.
11 is usually reduced to include only L𝑟 (𝜽) and L𝑑𝑜 (𝜽),
while the latter term contains all observational data. This
observational data also includes boundary data and we no
longer distinguish between the data sets {𝑥𝑘𝑏, 𝑢

𝑘
𝑏}

𝑁𝑏

𝑘=1 and
{𝑥𝑘𝑜 , 𝑢

𝑘
𝑜}

𝑁𝑜

𝑘=1. Second, the PDE parameters become train-
able parameters [1].

4. Method adaption to realistic one-dimensional
applications
Previous work, which include [2], [3] among others,

have proven the feasibility of material parameter identifi-
cation from displacement data using PINNs. However, the
assumptions made for this purpose often cannot be trans-
ferred to real-world applications, e.g. material parameter
identification of steel from digital image correlation (DIC)
data. These assumptions concern the domain size as well
as the magnitude of displacements and material parameters.
It is shown, that without further adaptions of the method,
PINNs show only poor performance on parameter identifi-
cation for realistic conditions. In the further course of this
section we develop a three-stage adaption of the method and
demonstrate its effectiveness by using synthetic but realistic
one-dimensional displacement data.

For demonstration purposes, we assume to have displace-
ment data of an one-dimensional stretched steel rod. The
considered stretched rod has a length of 100𝑚𝑚 and a
cross sectional area of 100𝑚𝑚2. While the upper end of
the stretched rod is clamped, the free end is pulled with a
force of 1 𝑘𝑁 . In addition, a volume force of 0.1 𝑁

𝑚𝑚3 acts
on the entire length of the stretched rod. A sketch of the
geometry and boundary conditions is shown in fig. 2.

In the one-dimensional case, the momentum equation
from eq. 1 can be simplified to

𝜕𝜎(𝑥)

𝜕𝑥
+ 𝑓 (𝑥) = 0, (14)

where 𝜎(𝑥) is the stress. After substituting the stress by the
constitutive relation, we obtain

𝐸
𝜕2𝑢(𝑥)

𝜕𝑥2 + 𝑓 (𝑥) = 0. (15)

Here, 𝐸 is the Young’s modulus and 𝑢(𝑥) the displacement
of the stretched rod.

For the forward solution, we used realistic material pa-
rameters and set the Young’s modulus to 210, 000 𝑁

𝑚𝑚2 .
Based on the analytical solution of the forward problem,

�
�
�
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�

�������
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�
�

Figure 2. Geometry and boundary conditions of a stretched rod
under tension load. The distributed load at the free end is set to
1 𝑘𝑁 and the volume force acting in the whole volume to 0.1 𝑁

𝑚𝑚3 .

the displacement data for the inverse problem were gener-
ated. The displacement data set consists of 100 data samples
uniformly sampled in the domain [0𝑚𝑚, 100𝑚𝑚] with the
coordinate as input and a related displacement in the range
[0𝑚𝑚, 0.007𝑚𝑚] as output. At the coordinates used in
the training data set, the loss for the PDE residual is also
determined during training.

Apart from the setup, the hyperparameters of both PINN
and training algorithm have to be specified. To approximate
the displacement of the stretched rod, we use a fully con-
nected feed-forward ANN as defined in subsec. 3.1 with
two hidden layers, each with 20 neurons. The hyperbolic
tangent was used as activation function in the hidden lay-
ers and a linear function in the output layer. During the
training, the ANN parameters and the unknown material
parameters were optimized in full-batch mode using the
Adam optimization algorithm [20] and a learning rate of
0.001. Training is limited to 20, 000 epochs, where one
epoch is an iteration over the complete training data set.
Before training starts, the weights were initialized using the
Glorot normal initialization [21] and the biases are initial-
ized with zeros. It is noted here that the ANN parameters
are initialized identically for all simulations in this section.
As long as it is not otherwise stated, the Young’s modulus
is initialized with zero. Since the hyperparameters have
proven to be suitable for the following demonstration, no
further fine tuning is conducted within this section.

Applying the PINN without further adaptions to the in-
verse problem described above yields a very poor approx-
imation of the displacement field, c.f. fig. 3. Moreover,
a Young’s modulus of 17.15 𝑁

𝑚𝑚2 is predicted, which is
far from the correct value. In the following, we develop
a three-stage adaption of the method to the realistic one-
dimensional application.

4.1. Normalization of inputs and outputs
Beside the poor result for the parameter identification,

fig. 3 underlines that the Vanilla PINN is not capable to
approximate the displacement from the provided data sam-
ples. As long as the approximation and its second derivative
are not sufficiently accurate, the parameter cannot be iden-
tified correctly either. It is well known that convergence of
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Figure 3. Vanilla PINN: Approximation of displacement data
by PINN. Beside the poor approximation, the identified Young’s
modulus is far from the exact value.

Figure 4. Normalized inputs and outputs: Approximation of
displacement data by PINN. Normalizing the inputs and outputs
is not sufficient to obtain a reasonable accurate approximation of
the displacements, even if slight improvements can be noticed.

ANN training can be accelerated by normalizing the inputs.
According to [22], the mean values of all input features
should each be close to zero.

We apply this heuristic by normalizing both the input and
output data from the original ranges to the range [−1, 1].
This is done by a linear transformation of the input and
output spaces based on the minimum and maximum values,
respectively. It is important to emphasize that the transfor-
mation of the inputs takes place after the real inputs are fed
into the PINN. Likewise, the PINN outputs the real out-
puts after a retransformation of the predicted transformed
outputs. As a result, the PINN does no longer learn the map-
ping from the real coordinates to the real displacements, but
a mapping from the transformed inputs to the transformed
outputs. As fig. 4 demonstrates, the effects of the normal-
ization of both inputs and outputs alone are not sufficient.
Also slight improvements are noticeable, further adaptions
are still necessary.

Figure 5. Conditioning of loss function: Approximation of
displacement data by PINN. Conditioning the loss function results
in a PINN approximation matching the measured data very well.
Nevertheless, after normalizing the input and output as well as
conditioning the loss function, the PINN is still not able to correctly
identify the material parameter.

4.2. Conditioning the loss function

We identified another failure mode in an ill-conditioned
loss function. The displacement data used in our simula-
tions has a maximum displacement in the order of magni-
tude of 10−3 𝑚𝑚. With displacement data in this range, even
large relative deviations of the PINN from the measured dis-
placement data result in only small losses in the loss term
L𝑑𝑜 (𝜽). For illustration, a data sample with a measured
displacement of 0.001𝑚𝑚 is considered. If we now as-
sume that the PINN deviates by 100% from the measured
displacement, then according to eq. 11 this only results in a
loss of 10−6 for the loss term L𝑑𝑜 (𝜽). The very small loss
value, in turn, directly results in a very small gradient of
the loss according to the parameters to be learned. At least
in gradient based optimization algorithms, small gradients
have limited effect on parameter optimization.

Instead of using mean squared error as metric for the loss
term L𝑑𝑜 (𝜽), we introduce the relative mean squared error.
The normalization of the deviation between the PINN and
the training data is algorithmically realized by modifying
the loss term L𝑑𝑜 (𝜽) from eq. 11 as follows

L𝑑𝑜 (𝜽) =
1
𝑁𝑜

𝑁𝑜∑

𝑘=1
[
�̂�(𝒙𝑘𝑜; 𝜽) − 𝑢𝑘𝑜

𝑙𝑐ℎ𝑎𝑟
]2, (16)

where 𝑙𝑐ℎ𝑎𝑟 is the characteristic length. To ensure that even
relatively small deviations again have an impact on the opti-
mization, we propose to choose the maximum displacement
from the training data set as the characteristic length. As
fig. 5 shows, with the conditioned loss function, an accu-
rate approximation of the measured displacement data can
be obtained. Nevertheless, the PINN has identified a value
of 18.4 𝑁

𝑚𝑚2 for Young’s modulus and is thus still unable to
correctly identify the material parameter.
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Figure 6. Error sensitivity of identified Young’s modu-
lus to initial estimate. For this purpose, Young’s modu-
lus was determined for different initial estimates in the range
[2.1 · 103 𝑁

𝑚𝑚2 , 2.1 · 107 𝑁
𝑚𝑚2 ]. The results show that the error

is not sensitive to the estimate for realistic values for the Young’s
modulus.

4.3. Initial parameter estimation
The results obtained in the previous subsection show that

although the PINN can approximate the displacement with
high accuracy, it still cannot identify the material parame-
ter. We found the reason for this in an ill-posed optimiza-
tion problem. While the Young’s modulus is initialized
with 0.0 𝑁

𝑚𝑚2 , the parameter must have a value close to
210, 000 𝑁

𝑚𝑚2 at the end of a successful optimization. In
comparison, the parameters of the ANN after training are
in the range [−0.73, 0.67] and have a mean value of −0.02.
We therefore assume that the material parameter encoun-
ters many local minima on the long gradient path and gets
stuck in one of them. In order to avoid this failure mode
and to get a better posed optimization problem, we intro-
duce an initial parameter estimate of Young’s modulus. The
underlying PDE from eq. 15 then changes to

𝛼𝐸𝐸𝑒𝑠𝑡
𝜕2𝑢(𝑥)

𝜕𝑥2 + 𝑓 (𝑥) = 0. (17)

Here, 𝛼𝐸 is the correction factor initialized with 1.0 and
𝐸𝑒𝑠𝑡 the initial estimate. With the introduction of an ini-
tial parameter estimate, the PINN does no longer learn the
Young’s modulus itself but a correction factor. By simply
multiplying the correction factor with the initial estimate we
get the identified Young’s modulus. With the third adap-
tion and an initial estimate of 210, 000 𝑁

𝑚𝑚2 , we succeed in
identifying a value of 𝐸 = 210, 032.5 𝑁

𝑚𝑚2 from the dis-
placement data. The relative error from the exact value is
less than 0.015%.

Finally, we analysed the sensitivity of the identified
Young’s modulus as a function of the initial parame-
ter estimate. For this purpose, the Young’s modulus
was determined for different initial estimates in the range
[2.1 · 103 𝑁

𝑚𝑚2 , 2.1 · 107 𝑁
𝑚𝑚2 ]. The results in fig. 6 illus-

trate that the error is not sensitive to the estimate within a
reasonable range.
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Figure 7. Geometry and boundary conditions of a rectangular
plate in plane stress condition under load. The distributed load is
set to 100 𝑁 and the volume forces acting in the whole volume to
1.0 𝑁

𝑚𝑚3 and −1.0 𝑁
𝑚𝑚3 in dimensions x and y, respectively.

5. Application of adapted method to two-dimensional
displacement data
We have shown in the previous section that after a three-

staged adaption, PINNs can accurately identify Young’s
moduli from one-dimensional displacement data of a linear-
elastic stretched rod. In the following, we verify that PINNs
can also be used for material parameter identification from
two-dimensional displacement fields.

For generation of the synthetic data set we considered a
rectangular plate in plane stress condition. The geometry of
the plate as well as the boundary conditions are outlined in
fig. 7. The displacement field is induced by a combination
of a distributed load of 100 𝑁 and volume forces with an
absolute amount of 1.0 𝑁

𝑚𝑚3 acting throughout the whole
volume. Up to now, we need volume forces in both direc-
tions, otherwise the PINNs learn the trivial solution. Just as
in the previous section, we choose the Young’s modulus and
the Poisson’s ratio to be 210, 000 𝑁

𝑚𝑚2 and 0.3, respectively.
Based on a FEM solution shown in fig. 8, we generated
a synthetic data set consisting of a total of 65 × 65 data
samples on an uniform grid. Each data sample is composed
of the coordinates in dimensions 𝑥 and 𝑦 as inputs and the
displacements 𝑢𝑥 (𝑥, 𝑦) and 𝑢𝑦 (𝑥, 𝑦) as outputs.

Some adjustments to the hyperparameters are required
when applying PINNs to two-dimensional displacement
fields. In order to solve the momentum equation in two
dimensions, we choose two independent ANNs to approxi-
mate the displacement fields 𝑢𝑥 (𝑥, 𝑦) and 𝑢𝑦 (𝑥, 𝑦). Accord-
ing to [2], using separate ANNs for the two displacement
fields results in a far more effective strategy than approxi-
mating both displacement fields with one sufficiently wide
ANN with two output neurons. Due to the increasing com-
plexity of the displacement fields to be approximated, we
increase the number of trainable parameters and use ANNs
with two layers of 40 neurons each. We apply the three
adaptions developed in sec. 4 and choose the maximum
displacement as characteristic length for conditioning of
the loss function, which is 0.084𝑚𝑚. As the initial esti-
mate, we provide the exact material parameters. The other
hyperparameters are chosen as specified in sec. 4.

The mean relative L2-Norm of the approximated dis-
placement fields 𝑢𝑥 (𝑥, 𝑦) and 𝑢𝑦 (𝑥, 𝑦) is 1.3 · 10−3 at the
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(a)

(b)

Figure 8. Solution of displacement fields a) 𝑢𝑥 (𝑥, 𝑦) and b)
𝑢𝑦 (𝑥, 𝑦).

end of the training. We could not observe any other anoma-
lies in the approximated displacement fields. The develop-
ment of the predicted correction factors for both Young’s
modulus and Poisson’s ratio during training are shown in
fig. 9. After training 400, 000 epochs, the prediction for
𝛼𝐸 and 𝛼𝜈 are 1.005 and −0.06, respectively. We observed
similar results for volume forces with an absolute amount
of 0.1 𝑁

𝑚𝑚3 and 10.0 𝑁
𝑚𝑚3 .

We assume one possible reason for the large error in the
two-dimensional setting in an ill-posed inverse problem.
The ill-posedness of the inverse problem is caused by the
Young’s modulus which is in the order of magnitude of
O(105) 𝑁

𝑚𝑚2 . On the other hand, the volume forces in our
example have a magnitude of 1.0 𝑁

𝑚𝑚3 . As a consequence,
the partial second derivatives of the displacement field are
very small. At the same time, large relative errors in the
second derivatives have a strong impact on the accuracy of
the material parameters to be identified. This in turn results
in high requirements for the accuracy of the displacement
field approximation. To obtain a better posed problem, we
are currently working on possibilities to further condition
the momentum equation.

The simulation results underline that the parameter iden-
tification requires higher accuracy of the displacement field
approximation. In the one-dimensional case, the relative
L2-Norm of the displacement approximation has a mag-
nitude of O(10−5) and the identification of the Young’s
modulus succeeds with a small relative error. In compari-
son, we find a large error in the identified Poisson’s ratio in
the two-dimensional case. At the same time, however, the
relative L2-Norm of the displacement field approximation
has a magnitude of O(10−3) and the accuracy is thus signif-
icantly lower than in the one-dimensional case. Therefore,
our research additionally focuses on investigating methods

Figure 9. Development of predicted correction factors of
Young’smodulus andPoisson’s ratio. The exactmaterial param-
eters were used as the initial estimates. Therefore, if the material
parameters were identified exactly, the correction factors would
have to converge to 1.0.

for improving the accuracy of the approximated displace-
ment field and its second partial derivatives, such as regu-
larization techniques.

Another reason for the observed instabilities in optimiza-
tion could be the used optimization algorithm. In order to be
able to exclude this cause, we will also investigate other op-
timization algorithms in the future, including second-order
optimization algorithms.

6. Conclusion
We developed a three-staged adaption of physics-

informed neural networks (PINNs) for material parame-
ter identification to realistic one-dimensional applications
considering linear-elastic materials. First, we applied a nor-
malization of both inputs and outputs of the artificial neural
networks (ANNs). Second, after identification of another
failure mode in too small gradients, we conditioned the loss
function by normalizing the relatively small residuals in the
data fit loss terms by a characteristic length which we set to
the maximum displacement. Third, we enabled the PINN
to identify the material parameters by providing an initial
estimate. With this adaption, instead of the material param-
eter itself, the adapted PINNs learned a correction factor of
the initial estimate.

Since we faced some problems when applying the
adapted method to two-dimensional displacement data, we
are currently working on further improving the method.
Our ongoing and future research involves, among others,
investigating what properties the displacement field must
exhibit in order for material parameter identification from
displacement data to be successful. In this context, we also
consider more complex geometries, such as a plate with
a hole. As we assume one reason for the large error in
parameter identification in an ill-posed problem, we inves-
tigate possible solutions for obtaining a better posed inverse
problem. Related to this, we found that the accuracy of
the material parameter identification and the displacement
field approximation are correlated. Therefore, our work
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also focuses on how to increase the accuracy of both the
displacement field approximation and its derivatives.

When it comes to real-world applications where the
displacement data is measured by digital image correla-
tion (DIC) another challenge is that the material parameters
are stochastic in nature. Reasons are, among others, ma-
terial inhomogeneities and noisy sensor data. Because of
the significance for real applications, our ongoing research
also aims to quantify the effect of the aforementioned un-
certainties on the predicted material parameters. For this
purpose, instead of the original PINNs, extended variants
of them could be used, as proposed in [23] or [24].
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