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Abstract: In this study, we developed a surrogate model that could efficiently calculate the displacement behavior of a wall to
construct a robust design method and real-time control system for earth-retaining walls in large-scale underground spaces.
Based on the construction of a dynamic mode decomposition approximation model with a focus on the cantilever state, we
constructed a model that enables proxy calculations for various conditions using the stiffness matrix of the beam—spring model
for conversion to various strut placement situations. Finally, the effectiveness of the surrogate model was verified from the
viewpoints of the reproducibility of the elastoplasticity analysis results based on a simple problem setup and connectivity to the
optimal design based on the optimization calculations of the strut placement.

Keywords: dynamic mode decomposition; reduced-order models; inverse analysis; time-series analysis; real-time control

1 Introduction

When constructing a large underground space, temporary structural walls, called earth retaining walls, are
constructed, and struts and other support structures are placed to ensure the stability of the earth-retaining wall. In
this case, it is necessary to achieve serviceability (to secure a large space for as long as possible) and safety (to
prevent the collapse of the retaining wall) to improve the workability in the excavation space. This design and
planning problem is complicated by the characteristics of geomaterials deposited around earth-retaining walls.
Although the ground is multilayered and heterogeneously distributed, it cannot be fully understood at the design
stage; therefore, the structural design must be robust (insensitive) to ground-derived uncertainties (Shih-Hsuan et
al. 2012, Jianye et al. 2017, Otake et al. 2019). Therefore, it is crucial to treat the reliability assessment of
earth-retaining walls as a site-specific problem, depending on the structure and environmental conditions of the
target earth-retaining wall. In this design and planning problem, not only the structural properties, such as the
stiffness of the wall and struts, but also 1) the location and time of the strut placement, 2) the magnitude and time of
the forced load from the strut, and 3) the observation results during construction should be considered and
reviewed sequentially. Therefore, it is necessary to develop a mathematical model formulated as a
decision-making problem under uncertainty and contribute to robust design and real-time control.

Recent developments in data-driven science enable us to elucidate important principles from vast amounts of
spatiotemporal information and quickly perform proxy calculations of complex physical phenomena. In previous
studies (Otake et al. 2018, 2021), we showed that by applying modal decomposition (eigen orthogonal
decomposition) to numerical results (spatiotemporal data of physical indicators), proxy calculations can be
performed while maintaining the spatiotemporal characteristics of the ground. In this study, we investigated the
use of dynamic mode decomposition (DMD, e.g., Kutz et al. 2016, Arai et al. 2021), a data-driven science method.
DMD is a mode decomposition method proposed for fluid dynamics and is a relatively recent mathematical
innovation. It is a dimensional contraction model in which dynamic and complex nonlinear physics are divided
into time and space variables and represented by the mode superposition governed by eigenvalues. Because an
exponential function approximates the time evolution, the future behavior of the target system is simplified, and
optimal control reflecting the future evolution of the target physics may be efficiently implemented.

This study focuses onestablishing a robust design and real-time control model for the stiffness of
earth-retaining walls and support arrangement planning. We utilized the displacement behavior of the retaining
wall as the training data obtained from the numerical results, and a hybrid surrogate model was developed by
integrating the DMD algorithm and beam theory on an elastic foundation. A characteristic approach reduces the
surrogate model to a form of linear differential equation (a linear system). This principle is based on the ease of
coupling with optimization theory and is intended to be extended to robust design methods and real-time control
models in the future.
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2 Configuration problem

2.1Target excavation section

Figure 1(a) shows a schematic of the retaining wall analyzed in this study. Table 1 lists the basic specifications of
the earth-retaining wall. A hypothetical excavated ground with a wall length of L=20m and excavation depth of
h=10m was assumed. The displacement behavior of the wall was evaluated when the overburden load, q, was
increased from 0 to 30 kN/m? at regular time intervals with Aq=1 kN/m?, assuming that the excavation was
completed. The total number of steps, m, was 31.
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Figure 1. (a) Schematic of target excavation section and (b) conceptual diagram of elastoplastic method

Table 1. Structural and geotechnical parameters

Parameter Value Unit
Wall length 20 m
Observation points 41

Groundwater level -1 m
Young’s modulus 2.00 x 10 kN/m?
Second moment of area  6.89 x 104 m?
Excavation depth 10 m

2.2Basic analysis methods and ground scenarios

The displacement calculation method of the retaining wall was based on the elastoplastic method used in the
Japanese design standards (Otake et al. 2019). A conceptual diagram of the calculation model is shown in Figure
1(b). The retaining wall was modeled as a beam, and the ground was modeled as a spring. The effective lateral
pressure, which is the earth pressure at rest subtracted from the active earth pressure, was applied to the back of the
wall, and the ground reaction force on the excavation side (resistance side) was modeled as a fully elastoplastic
spring with shear strength as the upper limit. Spatial variation was applied to the deformation coefficients (Figure
2). We established a linear system proxy model for the four spatial distributions generated by the stochastic process
and discussed the effect of variation on the linear system surrogate model.
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Figure 2. Four geotechnical scenarios (spatial distribution of deformation coefficients)

3 Research methods

3.1Proxy calculation model for each geological scenario

For a specific ground scenario i, the time evolution of the wall displacement distribution u; is approximated by a
linear system using the following equation. Additionally, this vector stores the displacement and rotation angles of
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each node.
d *
Wi = Aju + Bf (1)

In Eq. (1),A] € R?™2" is the time evolution matrix of the wall displacement vector,u; € R?", and f € R*"
is the forced load vector to control the wall deformation.B € R?"2" is a matrix of the column-wise array of
retaining-wall deformation vectors for a unit forcing load from an arbitrary point, and it is called the forcing load
operator. It is assumed that the forcing load operator is determined solely from the wall specifications.

B = Ky (Ey, Ly, L) ™ 2

In Eq. 2),Ky,(E,, I,,, L) is the stiffness matrix when the wall is modeled as an elastic beam, which can be
calculated from the stiffness of the wall (E,,, I,,) and length of the wall (L,,). These parameters are fundamental
indesigning earth-retaining walls and are determined (given as preconditions) at the beginning of the design.
Therefore, the forcing load operator is treated as known parameter. In other words, the construction of a linear
system proxy model results in the problem of determining the time evolution matrix A} of the wall displacement
vector.

It is assumed that A] depends on the displacement level of the wall because it may be affected by the
nonlinearity of the ground. In addition, because it depends on the strut placement plan (placement position and
time), which can be assumed to have countless combinations, it is difficult to determine a general-purpose matrix.
Therefore, in this study, we derived the matrix using the following process.

3.1.1 Modeling deformation time evolution of wall in cantilevering state

We focused on the time evolution matrix A; € R*™2" of the displacement vector u,; of the wall in the cantilever
state (no struts in place). The temporal variation of the wall displacement distribution obtained through the
elastoplastic method analysis was obtained using the DMD process. For details on the DMD algorithm, please
refer to Kutz et al. (2016).

d

~ — t
—Uoi ~® Aitlo; = PpiAridy it 3)

A = argAminllUi’ —AUlp

In Eq. (3),¢,; € C*"7 is a time-independent DMD spatial mode function, and A; € C"" is a matrix with
eigenvalues arranged in diagonal terms. The DMD spatial mode function was approximated in a dimensionally
compressed manner by extracting the r largest eigenvalues. U; € R?"™~1 and U] € R?"™~1 are data matrices
defined as follows, which are columnar matrices of the wall displacement vectors obtained using the elastoplastic
method:

| | |
U; = [ugi(to) upi(t) - ugi(tm-1) (4)
| | |

o |
U = [uoi(t) tou(t) -~ ugutn) ®
| | |

where u,;(t) is the displacement vector of the wall at time t. Because we focused only on the deformation
behavior in the cantilever state, it was assumed that r was extremely small. From the above, the wall displacement
vector uy(t;) at a certain time k in the self-supporting state can be calculated usingEq. (6)with the initial wall
displacement vector 1, (t,).

Ui () = ¢r,iAllf,i¢I,iu0,i (to) (6)

3.1.2 Modeling of deformation time evolution of earth-retaining wall in cut-beam configuration

In the elastoplastic method, the wall is modeled as a beam model, and the ground is modeled as a spring. The
subgrade reaction force on the excavation side (resistance side) is modeled as a fully elastoplastic model with the
shear strength as the upper limit. However, the nonlinearity of the ground is approximated using an equivalent
linear model, as expressed by Eqs. (7) and (8):

Py, = Kyiup; (7
Koi = Ky + KEIE )
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whereP,, € R?" is the external force vector (effective main active lateral pressure vector), and Ko; € R#™2" is
the stiffness matrix, which is expressed as a linear sum of the stiffness matrix of the earth retaining wall,Kyy, €
R?"2" and the distributed van matrix of the ground K¢} € R*™2". The superscript,“EL,” means equivalent linear,
and KE]; is the distribution spring matrix of the equivalent linearized ground, assuming that the ground is linear
and has no spatial variability. The 2n-2n matrix has one unknown quantity because it assumes linearity and no
spatial variability. KE} is identified by a particle filter using Eq. (9) as the objective function:

K& = argglin”UNLj - UEL,i”F 9)

ci

where Uyp; € R*™™ is the data matrix of wall displacements based on the elastoplastic method, and Ugy; €
R?™™ is the data matrix of wall displacements for linear analysis using KEY. The assumption of linearity of the
ground with no spatial variabilityis similar to the assumption based on the displacement method used in pile
foundation design. The reason for introducing this assumption is that the displacement levels targeted in predicting
the behavior of retaining walls are generally low, and the displacement of the wall is considered to depend on the
local soil properties within a few meters from the excavation bottom, as shown by the beam theory on an elastic
foundation.
Similarly, the displacement vector for a cut beam is expressed by Egs. (10) and (11):

Psa = Kiuo (10)
K; =K, +K& + K, (11)

where K € R?"2" s the stiffness matrix of the cut beam, where the stiffness of the strut (E;.Ag,) is placed at
the location where the strut are placed (diagonal term) and zero otherwise. Because P,, does not depend on the
presence or absence of struts, the displacement vector when the struts are placed can be determinedusingEq. (12).

u; = Ki'Koug; = Tyt (12)

The linear system surrogate model can be rewritten as follows.

d *
zui = Aiui + Bf = TkiAin,i + Bf (13)

Because the proposed model is based on DMD learning for the cantileverstate, it is expected to exhibit
significant dimensionality compression. The wall displacements under various conditions can be calculated by
simply converting the wall displacements in the cantilever state using a known stiffness matrix.

3.2 Extending the model with uncertainty

Assuming the soil spatial variability was modeled by stochastic processes, several soil scenarios were prepared.
For each scenario, an elastoplastic analysis of the cantilever state was performed, and the DMD was approximated
using Eq. (3). The analysis results of the four soil scenarios described below show that ¢, ; is insensitive to the
spatial distribution of soil spatial variability and is approximately similar. Therefore, the DMD spatial mode
function uses a certain reference spatial mode function ¢ ,f, and the change in wall behavior for different ground
scenarios is aggregated into eigenvalues, as expressed by Eq. (14):

/K
Uo i (ti) = Driliibl 1o, (t0) & Prrerri P rertlo(t) = PrrerXi (14)
K
Xii = Ay ¢I,refu0,i(t0) (15)
where,A}; is converted by a particle filter using the following objective function.
A’r,i = arg{nin”Ui, - ¢r,refA’r,i¢I,reri”F (16)
AL,

T,i

Based on the above, a simple stochastic model was constructed by imposing the effect of soil spatial
variability on the eigenvalue matrix A’ ;. To adopt u,(t,) and x,as random variable vectors, we rewrite them as
u,(ty) and x,. Because we cannot determine the statistics of the random variables in advance, we generated soil
spatial variability scenarios based on the stochastic process theory, which simulates the soil characteristics at the
target site. And we calculated its statistics based on numerical analysis results considering the soil spatial
variability. Although the value of ¢, is arbitrary, it is assumed to be the expected value of the soil scenario. If
the expected value E[X)]and covariance matrixCor[x,] of X can be obtained based on the numerical analysis as
Eq.(17) and Eq.(18), the expected value and covariance matrix of 1, ; (t;)can be calculated using Eq. (19) and Eq.
(20):
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E[%,] = E[Re[%,]] + E[Im[%,]]j (17)
where, j means imaginary unit.
Cor[%,] = E[(%x — E[*]) (kx — E[%,])"] (18)
E[ito(tk)] = PrrerElX] (19)
Corfity (t)] = PrrerCOrlRicl b rer” (20)

where,the superscript ”’H” means conjugate complex.The time evolution of the strut arrangement is approximated
using Eq. (17).

E[i(ti)] = TyrerElto (ti)] + Bf
COI‘[I:L(tk)] ~ Tk,refcor[uo(tk)]leref

whereTy ;¢ is the transformation matrix based on KE];efand is identified from the ground scenario of the reference
case.KEY:

The convergence K

(e2))
(22)

¢ 1S associated with the displacement level at the bottom of the excavation during the learning process.

E_';ef is obtained by a simple calculation used in the equivalent linear ground response

analysis SHAKE (Schnable P.B. et al. 1972). This treatment of the nonlinearity of KE';ef is omitted for reasons
of space limitation. The above equation is an approximate solution because it does not reflect the variation in
Ty ifor each ground scenario. This assumption is made because Ty ; is assumed to reflect the effect of Ky, more
strongly thanKE]; and on a convenience assumption to limit the particle filter to only one reference case. The
accuracy of this approximation needs to be examined in future studies.

Therefore, if we can determine the mean vector and covariance matrix of the eigenvalues at arbitrary steps
in the cantilever state during the learning process, the uncertainty in the displacement distribution under various
design conditions can be computed immediately.

4 Research Results

Figures 3 shows the calculation results of the DMD spatial mode functions and time evolution (eigenvalues) from
the elastoplastic analysis, assuming the cantilever state for the four ground scenarios. The number of significant
modes was determined to be two because the cantilever state was used as the training target, and the unknowns
(parameters) of the predictive model were the eigenvalues of the two modes. The number of mode functions was
determined qualitatively by examining the magnitude of singular values. These results show that the effect of soil
spatial variability is insensitive to the spatial mode function, and there is no significant difference in the spatial
mode function. Figure 4 shows the superimposition of the elastoplastic method and proxy calculation values for
the cut-beam configuration. The proposed method almost perfectly replicated the elastoplastic method results, and
the effectiveness of the proposed method was verified. Figure 5 shows the range of expected values and a standard
deviation of the predictions based on Egs. (17) and (18) under the same conditions as those shown in Figure 3.
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Figure 3. (a) DMD spatial mode functions and (b) time evolution(eigenvalues)
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Figure 4. Comparison of elastoplastic method and proxy calculation values
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Figure 5. Range of one standard deviation of predictions

5 Conclusion

In this study, a linear-system-type surrogate model wasestablished to efficiently predict the displacement behavior
of an earth-retaining wall while increasing the surface load after the excavation is completed. The proposed
method wasdeveloped to construct an autonomous control model for large-scale earth retaining walls. This
linear-system-type surrogate model is proposed to integrate DMD and the beam theory on an elastic foundation.
Four simple soil heterogeneity scenarios were analyzed, and their effectiveness was verified numerically. Because
the linear system model has a high affinity with the optimization and control theories, we believe that it will be an
essential elemental technique for constructing autonomous control models. In the future, we plan to validate the
model using actual observation records and extend it to a model for predicting the displacement behavior of
earth-retaining walls during excavation. In addition, we plan to develop a robust design method for the initial
design of struts and extend the model to a real-time control model during construction.
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