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Abstract: The Young's modulus is a common and critical soil property. It is difficult to infer the spatial distribution of Young's
modulus on a large ground, owing to the uncertainty. In this study, a method using ensemble Kalman filter (EnKF) to solve the
inverse problem in the multichannel analysis of surface wave and estimate the spatial distribution of Young's modulus which
includes quantified uncertainty is presented. The statistic model derived from other investigation data could be integrated into
the inverse process to increase the accuracy of estimate by using sequential Gaussian simulation (sGs) to generate a reasonable
initial ensemble. The practical effectiveness of this framework is verified by numerical experiments using synthetic and realistic
data from an earth-fill dam. The impact of the initial ensemble and the two update schemes (stochastic and deterministic
updates) is discussed through the experiments as well.
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1 Introduction

The surface wave method (SWM) is a prevalent in-situ investigation. Compared with other destructive tests like
the standard penetration test (SPT), the SWM can be implemented quickly and conveniently. Because the velocity
of the surface wave is highly relevant to the velocity of the shear wave, many inversion processes of SWM lead to
a spatial distribution of the shear wave velocity. The shear wave velocity, which relates to the stiffness of the
medium, is an important property of subsoil. But it is hard for commonly used inversion processes like non-linear
least squares to quantify uncertainties of its result which is a single estimate in a position. The ensemble data
assimilation built on top of Monte Carlo methods is used in this study as an inversion process in the SWM to
evaluate the stiffness with quantified uncertainty.

Ensemble data assimilation methods such as ensemble Kalman filter (EnKF) (Evensen 1994) and particle
filter utilize samples to approximate the probability distribution of the model states. The EnKF can be used to deal
with high-dimensional and nonlinear problems. The fact that the distribution of state is assumed to be Gaussian in
EnKF gives rise to a low computational cost. The number of required samples in EnKF is far less than the number
in the particle filter. Therefore, the EnKF and its variants are almost the only way to approximate many realistic
and complex systems. Furthermore, compared with the elastic half-space hypothesis in traditional methods, in
EnKF, boundary conditions of systems could be taken into consideration with ease through the numerical model
which underlies the assimilation. There are two types of update schemes for the EnKF: stochastic updates
introduced by Evensen and deterministic updates, e.g., the ensemble adjustment Kalman filter (EAKF) introduced
by Anderson (2001).

The ensemble method is widely used in meteorology and oceanography and is gradually being applied in
mechanical engineering, petroleum engineering, and geotechnical engineering. By assimilating the observations,
the EnKF can modify the poorly known parameters and lead to best-guess estimates. There should be a correlation
between the observation data and the parameters to be updated. For different models, appropriate observation data
must be carefully chosen. Although the EnKF is used in many other disciplines as described above, few studies
applied the EnKF to infer the stiffness of subsoil with the data of the surface wave. It is necessary to evaluate the
validity of the method in this situation. Therefore, this work is a proof of concept for the new inversion process of
SWM based on EnKF.

2 Methodology

The update step of inversion process is the focus of EnKF. The deterministic methods which belong to the family
of square root filters are more accurate than stochastic methods for very small ensemble sizes. For the limited
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sample size in this work, the deterministic method that is also named ensemble adjustment Kalman filter is
implemented. Another two-step algorithm of this deterministic method, which is based on an assumption that the
prior distribution is Gaussian, is more efficient than addressing the covariance matrix directly. The two-step
algorithm is used in this work.

This algorithm first updates the observations of ensemble members (samples). The k-th observation yl((l) of
a member is derived from the corresponding state vector of ensemble member x®, where i = 1, ..., N. Then, the
observation increments, Ayy, for all ensemble members should be calculated from updated observation y,
and prior observation yy. Assume that the observation y is Gaussian, i.e., y ~ N(y, 0%), where ¥ is mean and
02 is variance. Similarly, the observation from instrument is also Gaussian and the variance is o2. Then, the
variance of updated observation 63 is given by

0% = [+ (c2) ] (1)
and the mean of updated observation is given by
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Then, for each ensemble members the Ay, for k-th observation can be calculated using
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It should be noted that the Ay, is a function of the variance of real-world observations which is very difficult
for some tests to determine. So, there is a numerical experiment to study the influence of 62 in the following
section. Once the increments of the observations are calculated, the increments of the state variables can be
calculated by linear regression.
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Figure 1. Reference spatial distribution of elastic modulus
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Figure 2. The initial state (left) and updated state (right).
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For EnKF, the ensemble of initial states should be determined appropriately. Quite often, the initial states for all
grid points are interpolated by observations at time point 0. in this section, the initial states are generated from the
data of N-value of Swedish weight sounding test (SWS), which was taken on an earth-fill dam, by sequential
Gaussian simulation(sGs). The realizations of sGs are treated as the samples of EnKF. The statistic model for sGs
consist of a mean function and a covariance function suggested by minimizing Akaike information criterion
estimation (NISHIMURA 2011) and semi-variogram, respectively. The mean function tells the trend of spatial
distribution and the covariance function tells the correlation.

4 Numerical experiment

The effectiveness of the method is examined by numerical experiments. The proposed initial ensemble is based on
the measurements from SWS tests implemented on an earth-fill dam located in Okayama, Japan. The numerical
experiments are conducted as follows. First, the initial spatial distribution of elastic modulus is computed as
described above to construct models. Then, the propagation of the surface wave is simulated by FEM as
observation data. One of the random fields generated by the sGs is treated as the reference spatial distribution and
its observations are treated as real-world observations for experiments. The rest of the samples which treated as
ensemble members are biased to make the mean of elastic modulus different from the reference. The result of
assimilation is evaluated by the residual sum of squares (RSS).
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Figure 3. Coefficient of variation before (left) and after update (right).

The uncertainty is quantified by the coefficient of variation. The observation increments depend on the
variance of real-world observations ¢3. In this work, it is difficult to give an exact o2 of the data acquired using
geophones, because the 62 depends on both the error of instrument and background noise.

In the first case, the error of the instrument is assumed to be very small, i.e., 62 = 0.1. The reference spatial
distribution of elastic modulus is shown in Figure 1. The prior spatial distribution (i.e., the initial condition) and
updated one (updated by all observations) are shown in Figure 2. It should be noted that the spatial distributions
here are ensemble mean. In this case, the RSS quickly and significantly reduces after the first update process. The
observations here used to compute RSS are not the updated observations which are always closer to the reference
than the prior observations, but the forecast observations derived from updated elastic modulus for next time or
the initial condition for the first time. Therefore, the scheme can be considered efficient. Although it is difficult to
adjust the ensemble to perfectly match the reference, the scheme can still significantly improve the accuracy. The
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Figure 3 shows the reduction of coefficient of variation for elastic modulus after data assimilation. This indicates
the uncertainty has also been reduced significantly.

In the second case, instead of using fixed variance, the o2 is 0.1, 1,2, 4, 8, 16 and 32 times of the ensemble
variance, respectively, i.e., o = G?, / 0% =0.1,1,2,4,8,16,32. The result of the assimilation experiment is shown in
Figure 4. It can be seen that the larger the o2, the slower the rate of RSS reduction. Even there is no noise in
reference observations which are calculated from the numerical model and the o2 should have been zero, the
small a (i.e., 0.1 or 1) brings about a result that is not better than the others at the final step. When a = 32, The
RSS is greater than other RSSs in almost step. This indicates that the 62 should not be too large either. In practice,
for a time-variant system, the excessive o2 will reduce the efficiency of the update process and increase the error
of forecast observation in every step. For a time-invariant system in this work (the reference elastic modulus is
constant), the relatively great 02 could still induce low RSS if there are enough observations for a sufficient

quantity of updates.
5 Summary

In this study, the first arrival time of artificially excited surface waves was assimilated to estimate the elastic
modulus of an earth-fill dam model. The initial ensemble is generated by sGs. The theoretical and practical
effectiveness of this scheme is verified by numerical experiments. The difference between an updated parameter
and reference and the uncertainty are both reduced by data assimilation. The reproducibility of observations is
verified by the reduction of the RSS.
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