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Abstract: Data assimilation or observation updating is a method for improving prediction by using observation data to reduce
the uncertainty. Particle filter (PF) is one of data assimilation methods based on Bayesian inference and Monte Carlo approach.
In PF, posterior probability distributions (PDFs) are expressed by many sample realizations. PF has a problem known as
degeneracy, where weights tend to concentrate into only a few particles, which causes poor computational performance. If
many particles are used, the degeneracy can be avoided, however it requires high computation cost. Adaptive surrogate model
approach for reliability analysis have attracted attentions for their low computation cost recently. We introduce a method to
estimate posterior probability distribution directly by using surrogate model constructed by adaptive Gaussian Process
Regression (GPR) with multiple random fields. The learning function is also very important in active learning, and has two
roles in estimation of posterior PDF: a) finding the location of large values of posterior PDF, b) avoiding the location where
posterior PDF is once calculated. The proposed method is demonstrated through a consolidation settlement problem. The
settlement is predicted by using soil/water coupling FEM analysis. Model parameters of FEM are updated by synthesized
observation data of settlements.

Keywords: Data assimilation; Gaussian process regression; Observation update; Particle filter.
1 Introduction

Bayesian model updating provides a useful probabilistic framework for assimilating the information contained in
observation data into models, where a prior probability distribution of model parameters is updated to a posterior
probability distribution. Except for special cases, the posterior distribution may not be amendable to analytical
derivation. Sample-based approaches have been developed to evaluate the posterior probability distribution
numerically. One popular method is particle filter (PF), in which probability distributions are approximated by
their sample realizations, called ‘particles’ in PF algorithm (Ristic et al. 2003). Straub and Papaioannou (2015)
proposes Bayesian Updating with Structural Reliability Methods (BUS). Subset simulation (Au and Beck 2003;
Au and Wang 2014) is often combined with the idea of BUS for efficiently generating samples from the posterior
distribution. Another useful method for Bayesian model updating is Transitional Markov chain Monte Carlo
(TMCMC) proposed by Ching and Chen (2007). These methods basically require many function calls (full model
evaluation, e.g., calculation by finite element method), consequently large computation cost.

One of attractive way to reduce the total computation cost is to use surrogate model (meta-model, response
surface) in order to reduce the number of function call which generally requires large computational cost in real
world problems. Echard et al. (2011) proposed an active learning with surrogate model by Kriging with MCS for
reliability analysis. Since then, many modified methods have been proposed for reliability assessment, especially
low failure probability, e.g., Echard et al. (2013), Huang et al. (2016), Kim et al. (2020).

This surrogate model approach can be also applied to Bayesian updating of model parameters. For example,
as the surrogate model in BUS with subset simulation, Giovanis et al. (2017) incorporates artificial neural
networks, Wang and Shafieezadeh (2020), and Kitahara et al. (2021) incorporate adaptive Kriging. Ni et al. (2021)
proposed a variational Bayesian inference approach to estimate posterior probability distributions by using a
surrogate model of an adaptive Gaussian process modeling technique and a Gaussian mixture model.

In this paper, PF with a surrogate model is adopted to estimate posterior probability distribution of model
parameters for consolidation settlement prediction. The adaptive surrogate model is constructed by Gaussian
process regression (GPR) with multiple random fields (Yoshida et al. 2021).

2 Algorithm of Bayesian update by PF with adaptive GPR
The process of updating x with z is referred as the observation updating process. The updated PDF of x given the

information z, i.e., the posterior distribution, is obtained using the Bayes' theorem:
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The PF algorithm starts by generating random samples, often referred as “particles’, from the prior PDF p(x):
xV~p(x),  j=leen 2)

where the superscript (j) denotes the j-th particle. The prior PDF p(x) then has the following approximate
representation, called an ‘empirical PDF’:
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where & (*) denotes the Dirac delta function. Substituting Eq. (3) into Eq. (1) yields:
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The term a* represents the ‘weight’ (likelihood ratio) of particle j after updating. PF evaluates denominator
of Eq. (1), i.e., evidence Ck, simply by:

P@)= [0 503 =13 pz|x) (6)

The algorithm of PF is combined with the idea of adaptive surrogate model. GPR with two random Gaussian
random fields is used as surrogate model to express the distribution of posterior PDF in this study. The procedure
for the Bayesian update PF with adaptive GPR can be summarized as follows.

Step 1 Generate model parameter vector xca”? and calculate the numerator of posterior PDF
nea={log[p(zlxca”p(xca’)] , i=1, j}. Use these samples to construct a surrogate model of the function
log[p(z}x)p(x)] by GPR. Generate a large number of model parameter vectors xg”. Use these to calculate the
evidence Ck,; and posterior PDF based on the constructed surrogate model.

Step 2 Assume (or estimate) a standard deviation (SD) ox and a scale of fluctuation (SOF) dk:. Calculate the
covariance matrix M involved in the GPR.

Step 3 Determine the next sample for the calculation of the numerator as the one that maximizes the learning
function U(x), i.e., Xca’" V= argmax(U(x)). U(x) is explained below

Step 4 Calculate the logarithm of the numerator of posterior PDF, i.e., ncal*", at xca’"". Expand the set of
samples by including 7ca’"? in the vector sea and xca™V in Xea=[xcalV, xca®, ..., Xca? , xcal¥*V]. Advance the
sample size index j by 1.

Step 5 Calculate the evidence Ck, and posterior PDF by using the particles xgp” and surrogate model GPR
(x| HAcal, Xcal).

Step 6 1Ifj is greater than the required sample size, stop. Otherwise, go to Step 2 to generate a new sample

The learning function U(x) in Step 3 is based on the constructed surrogate model in Step 2 and is given by

U(x) = r(x)(u(x) —min(n,,)) (7
7(X) = O poererior (X)/ T prior (X) (8)

where O pocerior (X) and O o (X) are posterior and prior SD at x of the surrogate model by GPR. The learning
function has two roles: a) finding the location with large values of p(z]x)p(x), and b) avoiding the location where
p(z|x)p(x) has already been calculated so far.

The proposed method is illustrated using the single-variable example. It involves updating a scalar random
variable x whose prior PDF is assumed to be N(0,1), i.e., Gaussian with zero mean and unit SD. The observation
z has a mean value of 4 and its observation error is Gaussian with a SD of 0.6. This problem has an analytical
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solution: the posterior distribution is Gaussian with a mean of 2.94 and a SD of 0.51, i.e., N(2.94, 0.51?). In Step
1, two samples xea”, i=1, j (j=2) are initially generated and the logarithm of numerator nca is calculated. In Step
2, the SD ¢ and SOF ¢ for estimating ux(x) are assumed as follows: ¢1=2 and 1,1 = 3 for the first random field;
02=1 and 92,1 =0.3 for the second random field. In Step 3, the learning function U(x) is maximized to give a new
sample xcal/*V = argmax(U(x)) for the next function call. The SOF J, for 7(x) of the learning function is assumed
to be equal to that of the second random filed, i.e., 6, =021 =0.3.

Figure 1 shows the true numerator of the posterior PDF (black line), the value of numerator (black dot) of the
two samples xca?, j=1,2 generated in Step 1, surrogate model estimated by GPR (red line) based on these two
samples, the learning function U(x) (blue line) and the next sample xcaV"" (red dot) to calculate the numerator.
Figure 1(a) shows the surrogate distribution (red line) does not match the true one (black line) well because there
are only two points for the estimation. The learning function is the same as the surrogate distribution except near
the two sampling points. The next sample xca" is determined such that the learning function is maximized, i.e.,
at the peak of the blue line. Step 2 to 6 are repeated until the number of function calls j reaches 16. Figure 1(b)
shows the results when j=16. There are more samples near the peak, and the estimated distribution is in good
agreement with the true one.
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Figure 1. True and estimated numerator of posterior PDF, and learning function of single variable illustrative example,
(a)the number of function call is two (j=2) and (b) the number of function call is 16 (j=16).

The proposed method is also demonstrated by the simple linear inverse problem with three observations and
two unknown variables.

160 1 2 30° 0 0 9
z=|170 ,x:[xl}H: 2 1LR=| 0 30° 0 ©)
100 2 11 0 0 30°

where, observation z is given by z=Hx+v, R indicates covariance matrix of observation error v. The parameter
vector x whose prior PDF is assumed to be N(0,100]), where 0 and / indicates zero vector and an identity matrix.
In Step 1, five samples xca(7), i=1, j (j=5) are initially generated and the logarithm of numerator 7cal is calculated.
In Step 2, the SD ¢ and SOF 4 for surrogate model by GPR are assumed as follows: o1 = 2, 1,1 = 8.0x10? for the
first random field; o2= 1, 52,1 =1.6x10? for the second random field. These parameters were determined empirically.
In Step 3, the learning function U(x) is maximized by particle swarm optimization (PSO) to give a new sample
xeal’™V for the next function call. In the implementation of PSO, the number of population and generation (iteration)
are taken to be 100 and 50, respectively. Figure 2(a) shows the estimated posterior PDF and thirty function call
points. The three lines indicate the observation equation, z=Hx. Figure 2(b) shows the convergence process of
evidence Ck;. The evidence gradually converges and becomes almost constant after 25 function calls. The
estimated CDFs of parameter 1 by 10 independent runs are shown in Figure 3, where the number of function call
is 10, 20, and 30. The estimated CDFs by 30 function calls are in good agreement with the true one.
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Figure 2. Estimated posterior distribution after 30 function calls of two-dimensional linear problem, (a) Function call points
and contour by surrogate model, (b) log10(Evidence Cg).
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Figure 3. Estimated CDFs of parameter 1 by 10 runs for the two-dimensional linear problem, (a) after 10 function calls,
(b) after 20 function calls, (c) after 30 function calls.

3 Model for settlement prediction

Figure 4 shows the model ground and observation locations for settlement prediction. The embankment is
constructed on the ground consisting of five layers: the first and fifth layers are sand, and the second, third and
fourth layers are clay. The first and fifth layers are modelled by linear elastic model, and second, third, and fourth
layers are modelled by Cam-clay model. The observations of settlement are given at location S1 under the
embankment.

Figure 5 shows the FE mesh used in the analysis. The half of the ground area is modelled because of the
symmetry. The parameters of the second to fourth layers used in the analysis are shown in Table 1. The elastic
modulus, Poisson’s ratio and coefficient of permeability of layer 1 and 5, which are assumed to be linear elastic
and deterministic, are 1.28%10° (kPa), 0.33, 1.00x107 (m/s) respectively. Coefficient of permeability k& and
compression index 4 of second clay layers are estimated by the proposed method based on the observation data. In
addition to these two parameters of the clay layers, parameters o and S for loading process are also estimated. The
total number of parameters for estimation is four.

Table 1 Deterministic model parameters for settlement prediction.

v K e M Ko K; Ak oy OCR A k
(kPa) (m/s)

Layer2  0.348 0.123 1.837 1.023 0.563 0.563 0.833 14.70 1.00 - -
Layer3  0.348 0.123 1.525 1.023 0.563 0.563 0.833 42.35 1.00 0.568  0.006
Layer4  0.348 0.123 1.278 1.023 0.563 0.563 0.833 97.65 1.00 0.512  0.003

v: Poisson’s ratio, x: Swelling index, e: Void ratio, M: Critical state parameter, Ko: Coefficient of earth pressure at rest, K;:
Coefficient of earth pressure at rest (overconsolidation), Ax: Permeability change index, o,’: Overburden pressure (kPa),
OCR: Over consolidation ratio, A: Compression index, k: Coefficient of permeability (m/s)

Table 2 Model parameters for estimation.

877

Parameter Range
. . log 100 -0.1-0.1
Loading condition log 10 17-02
10g 10 A -0.4-0.17
Layer 2 Jog 10k (m/s) 3.0-1.0

A: Compression index, k: Coefficient of permeability (m/s)
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Figure 4. The model ground and observation locations S1-S4. Figure 5. Finite element mesh for settlement prediction.

The loading process by embankment construction is often treated deterministically in simulations. However,
it may contain uncertainties especially when the simulation model for settlement is two-dimensional because the
real world construction process is three-dimensional. The loading process is defined by Eq. (10), and the
parameters « and /3 are also estimated based on the observation data.

1 [ebollexplpr) =/ lexplT)- 1)} 1<7 (10)
! aF;, t>T

where, fr is the embankment load at time ¢, Fo is final embankment load, volume multiplied by unit weight of soil,

T is construction period. The four parameters listed in the Table 2 are estimated based on the synthesized time-

series of settlement shown in Figure 6 (black line). The logarithm of model parameters are normalized to the

standard space [0, 1] by the range indicated in Table 2.
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Figure 6. MCS with respect to the model parameters in Table.1 and observation data for updating at S1 and S4.

4 Updating of model parameters and settlement prediction

4.1 Procedure of updating by PF with adaptive GPR

In Step 1, twenty initial samples (xca”, i=1, 20) are generated by Sobol method, at which the logarithm of
numerator s is calculated. In Step 2, the initial values of SD ¢ and SOF ¢ for estimating u,(x) are assumed to be
01=10,02=15, 61.,=1.0, and d2,; = 0.2, i=1, 4 in standardized space. These 10 parameters are estimated by ML after
70, 120 and 170 function calls. It is assumed that the SOF ¢, in r(x) of the learning function follow uniform
distribution of U(0.1, 0.4) up to 100 function calls, and then U(0.001, 0.4) thereafter. This is intended to capture
the overall trend of the target distribution in the early stage, and then the details later. In Step 3, PSO is used to
search a next sample xca’™" for function call in the same way as two-dimensional problems. The number of

population and generation (iteration) of PSO are 100 and 50. Steps 2 to 6 are repeated until the number of function
calls j reaches 200.

4.2 Updated parameters for settlement prediction
Figure 7 and 8 show the estimated parameters by direct PF and PF with adaptive surrogate model, the histograms
of the loading parameter o and £, the coefficient of permeability &, and compression indices A of the second layer.
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Figure 7. Histogram and contour map of cross-sectional joint PDF of estimated model parameters o and S(standardized),
(a) number of function call is 20 (j=20), (b) number of function call is 100 (j=100) and (c) final result (;=200).
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Figure 8. Histogram and contour map of cross-sectional joint PDF of estimated model parameters compression index 4 and
permeability k of 2" layer (standardized), (a) number of function call is 20 (=20), (b) number of function call is 100 (j=100)
and (c) final result (j=200).
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Compression indices A are not sensitive because their histogram are almost flat. The other parameters vary
significantly, indicating that they are sensitive/influential parameters. The cross lines in Figure 7(c) and 8(c)
indicate the estimates with the largest likelihood value among the 200 function calls by the proposed method, and
20,000 function calls by direct PF. For sensitive parameters, there is a good agreement with the true parameter
values. Based on the results presented here, the estimates with the maximum likelihood values among samples by
the proposed method are better than those by PF. The estimate of posterior distribution by the proposed method
with only 200 function calls can be considered acceptable if fine detail is not required.

5 Conclusions

PF with adaptive GPR for Bayesian updating method has been applied to update settlement predictions simulated
by soil-water coupled FEM with Cam-clay model. The posterior distributions of four model parameters have been
estimated by 200 function calls and compared with those estimated by direct PF with 20,000 function calls. Three
parameters except the compression indices, which is not sensitive, show good agreement with true values. In this
study, the four-dimensional problem is solved and the good result is obtained. The applicability to a higher
dimensional problem and stopping criteria are future research topics.
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