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Abstract:Regional liquefaction potential assessment usually requires spatial interpolation based on probabilistic models
(e.g., conditional random field, CRF). Accuracy of spatial interpolation relies highly on the number of testing data and
stochastic model parameters. Since testing data is often insufficient,statistical uncertainty on model parameters is inevitable.
Moreover, efficient CRF simulation across a large region is also of practical importance in engineering applications. In this
paper, regional probabilistic characterization of the liquefaction severity index (LSI) calculated from cone penetration test
(CPT)-based simplified procedure (SP) is presentedbased on Kriging-based CRF. With the proposed approach, the spatial
variability and statistical uncertainty are, explicitly and simultaneously, considered through the ancestor sampling method
(ASM) under a Bayesian framework. The proposed method is illustrated and validated using real CPT data. Results show that
the proposed method provides reasonable spatial interpolation results of LSI values based on a limited number of CPT data,
and the spatial variability and statistical uncertainty are taken into account in a quantifiable and rational way without
compromising the computational efficiency of CRF simulation. Ignoring the statistical uncertainty might lead to
underestimation of the prediction uncertainty.
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1 Introduction

Earthquake-induced liquefaction of soils is one of the causes of the devastating damage (e.g., Kramer 1996; Ku
et al. 2012). As a result, assessing the liquefaction potential of a liquefaction-prone area is critical. Among
numerous methods, empirical simplified procedures (SP) based on in-situ tests, such as cone penetration test
(CPT),are the most widely used methods for evaluating liquefaction potential (e.g., Seed and Idriss 1971;Zhang
et al. 2002; Robertson 2009).However, SP only provides an estimate of liquefaction potential for a specific depth
within an individual CPT sounding. An alternative approach using the liquefaction severity index (LSI) to
quantify the liquefaction potential at testinglocationshas been developed over the past few decades (e.g., Iwasaki
et al. 1982; Lee et al. 2004; Sonmez and Gokceoglu 2005). More importantly, understanding the spatial
variability of LSI over a regionisoften of practical concern. Conditional random field (CRF), especially Gaussian
CREF, is a useful technique to characterize the spatial variability in geological and geotechnical practice (e.g.,Li
etal. 2016).

With a Gaussian CRF, the joint distribution among variables can be specified by the second-order statistics,
namely mean valuey and covariance matrix (or, equivalently, standard deviation (STD) o and scale of
fluctuation (SOF)A given a correlation function). It is not possible to precisely obtain actual values of these
statisticsbased on a limited number of measurements. In other words, estimates of CRF model parameters are
inevitably associated with statistical uncertainty. Moreover, simulation of CRF for spatial variability
characterization at a large-scale region is computationally expensive, particularlywhentesting locations are non-
latticed (e.g., Xiao et al. 2018; Ching et al. 2020).

This paper develops a novel Bayesian framework integrating the empirical CPT-based SP with Kriging-
based CRF simulation forefficiently probabilistic assessment of the regional liquefaction potential based on a
limited number of CPT soundings at an area. Under the proposed framework, model parameters of CRF of LSI
are inversely analyzed from LSI values calculated from CPT data at testing locations and their statistical
uncertainties are quantified as well. This paper starts with descriptions of the empirical SP for evaluating LSI
values at CPT locations. Then,CRF model paramgfgrs learning and CRF simulation are sequentially
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implemented by the ancestor sampling method (ASM) under the proposed Bayesian framework. Finally, the
proposed method is illustrated using real CPT data collected from Yuanlin, Taiwan.

2 CPT-based SP for EvaluatingLSIbased on CPT
LSI is a liquefaction potential indexconsidering both the severity of liquefaction and the depth of the liquefiable

soil layers. It is evaluated using an integration of the calculated liquefaction probabilityP. over depth together
with a weighting function W, which is expressed as (e.g., Iwasaki et al. 1982; Sonmez and Gokceoglu 2005):

20
Ls=[ "B () (2) et (1)

where W( z) =10-0.5z and z is the depth in meters.According to the literature (e.g., Ku et al. 2012), P.can be

calculated as:
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where @ is the standard normal cumulative distribution function; Fs is the factor of safety against the
liquefaction at a given depth.In this study, aCPT-based empirical SP is employed to evaluate Fs,by which Fs is
defined as the ratio between the cyclic resistance ratio (CRR) and cyclic stress ratio (CSR). Details of
implementing the CPT-based SP for calculating Fs can be referred to Zhang et al. (2002) and Robertson (2009).
Based on the CPT-based SP, LSI values at CPT locations can be obtained. However, CPTs are usually tested
sparsely over a region in engineering practice.In the next section, Kriging-based CRF is used to assess the
liquefaction potential at a region based on a limited number of CPTs.

3 Spatial Variability Characterization of LSI considering Statistical Uncertainty

Kriging-based CRF often assumes that the underlying random field is Gaussian (e.g., Bishop 2006). Considering
that LSI defined in Eq. (1) has a lower bound at zero, it is assumed to follow the lognormal distribution.
Correspondingly, the logarithm of LSI, denoted by &(i.e.,In(LSI)), follows the Gaussian distribution. Herein, the
CRF parameters include mean value y, STD o, and SOF Afor&. It is impossible to determine these parameters
precisely based on the limited number, n, of CPT soundings, orn LSI values calculated from CPT-based SP using

T
the n CPT soundings.Let és =[§f,§§,---,§;] , gz[fl,fz,---,fl\,}r, and Q:[y,o,l]T, where &' represent

the logarithm ofLSI values at CPT locations and ¢ is the logarithm of LSI values at the whole region of interest.

From a probabilistic perspective, inferring ¢ based on i‘“ needs to specify possible values of CRF parameters @

given &°. Using the Theorem of Total Probability, the conditional probability density function (PDF) p(éﬁ ‘g‘)

is written as (e.g., Ang and Tang 2007):
lgle)=[r(zele )ao-[ (gl o) oo

where p ( o
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§S) is the conditional PDF of CRF parameters quantifying the statistical uncertainty of ¢ given &°;

p(§

into two steps: characterizing the statistical uncertainty of the CRF model parameters based on p(g

£, Q) is the conditional PDF of ¢ givenfand &*. As shown by Eq. (3), solving p(g‘

55) can be divided
55) and

(fs,g). These two steps are introduced in the

predicting LSI values at locations without CPTs using p(z:

following two subsections, respectively.

3.1 Characterizing Statistical Uncertainty of CRF Parameters
In this subsection, CRF model parametersfare learned based on &° within a Bayesian framework. Using Bayes’

theorem, the posterior distribution p ( [

§S) of dis given by (e.g., Wang et al. 2010):
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p(e¢')=ke(0)p(2'[0) )
where K is a normalizing constant that is independent of 6, p (Q) is the prior distribution of @ for quantifying the
knowledge on @ in the absence of data; p(c_fs |Q) is the likelihood function reflecting the model fit between &°

and the random field model given f.In the absence of prevailing information on 6, a joint uniform distribution is
used and defined by relatively large ranges (i.e., [#min, fhmax], [ Omin, Omax], and [Amin, Amax]) of 1, o, and 4 (e.g.,
Cao et al. 2016). As discussed in the preceding section, ? is an n-by-1 Gaussian random vector with mean

ulyand covariance X*given 6. Then, p (55 |Q) is written as (e.g., Wang et al. 2010):

p(&'10)-N (u,.=*) 5)

wherel, = [1, 1, ..., 1]7is an n-by-1 vector; =° = o°>R*; R’ is an n-by-n correlation coefficient matrix of &, and

can be calculated by a user-defined correlation function, such as the single exponential correlation function.In
this study, an isotropic correlation function is adopted, and it has an identical A value in different directions on
the horizontal plane. Eq. (4) can be evaluated by various stochastic simulation methods. In this study, the
Markov Chain Monte Carlo (MCMC) method, specifically the Metropolis-Hastings algorithm,is adopted to draw

posterior samples of @ from p(Q

éj“')(e.g., Cao et al., 2016).Subsequently, they can be used as inputs for

predicting the logarithmic LSI values at locations without CPT soundings based on p(§

§S,Q), as illustrated in

the following subsection.

3.2 Predicting of LSI using Kriging-based CRF
From a Bayesian perspective, the conditional PDF p((j

?,Q) can also be defined as the posterior distribution
of § givend and é‘“. As mentioned before, g and é“ are both assumed to be normally distributed given &, i.e.,
P(ﬁs |Q)~N (ygn,zS) and p(§|Q)~N (,ulN,Z), where T is an N-by-N covariance matrix among & .
Correspondingly, p(é ‘?,Q) is also a multivariate Gaussian posterior distribution, and it is written as (e.g.,

Bishop 2006):

o) (u oo (2 (e oo (52 0
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On the right-hand side of Eq. (6), the first term and the second term in parentheses are the posterior mean
vector and covariance matrix of & given &* and 6, respectively; ¥ is an n-by-N covariance matrix between &
and &°.

On one hand, the dimension of ¢ (i.e., N) might be extremely high for a large-scale region with a dense

mesh defying the direct matrix decomposition method for CRF simulation. Although it can be partially tackled
by Kronecker product providing that the correlation function is separable. However, it is compromised with the
case that the CPT locations are non-latticed. Note that the dimension of &° is usually smaller than that of é ,l.e.,

n<<N. It is relatively easy to calculate the mean term in Eq. (6), which is also known as the simple
Krigingestimator (e.g., Journel 1974; Cressie 1993). Thus, kriging-based CRF is used in this study to, indirectly

and numerically, simulate the spatial variability of é (i-e., p(§ gs,g)) (e.g., Journel 1974). In the context of

Kriging-based CRF, é is reconstructed as:

§= gsk +§u;f _§mjf,sk (7)
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where &7 is an unconditional random field (URF) realization of & over the whole region; & and &7+ are

urf N

simple Krigingestimates based on &* and £ realizations at CPT soundings, respectively. Because URF can be

discretized into a regular mesh with equally spaced elements, URF realization can be simulated efficiently with
the aid of Kronecker product, even though in a large region with a very fine mesh (e.g., Xiao et al. 2018).
To, explicitly and simultaneously, quantify the statistical uncertainty of & and the spatial variability of § ,

the ancestor sampling method (ASM)(e.g., Bishop 2006) is adopted herein to sequentially generate the samples 8
and § . Each set of posterior § samplesis used to simulate a set of § samples based on Egs. (6) and (7). As a

?) and

£ ),respectively. The implementation of the proposed method with ASM is illustrated using real data in

result, M realizations of @ and & are obtained using ASM to numerically depict p(ﬁ

p(c_f

the following section.

4 TIllustrative Example

For illustration, the proposed method is applied to evaluate the liquefaction potential of Yuanlin, Taiwan. The
region concerned is 6.4km by 6km, as indicated by green lines in Figure 1. The liquefaction was widely
manifested in this area causing significant damage to buildings, lifelines, and other facilities duringthe 1999 Chi-
Chi earthquake. Following the earthquake, extensive field investigation in Yuanlin area was conducted,
including in-situ and laboratory tests. Detailed ground conditions and geologic setting for this region can be
referred to MAA (2000) and Juang et al. (2002).

Figure 1 shows Yuanlin map along with the layout of 40 CPT soundings by circles. Correspondingly, the
LSI values calculated from CPT-based SP are also shown in Figure 1 by the size of circle.Input parameters of
CPT-based SP consist of peak ground acceleration (PGA), earthquake magnitude (M), soil average unit weights
above and under groundwater table (7 and ), and atmosphere pressure (P.), which are summarized in Table 1.
The groundwater table is measured and recorded along with the CPT data. As shown in Figure 1, the calculated
LSI values vary from approximately 0.0 to 65.0 in this region, and their logarithmic values are used as the input

of the proposed method (i.e., &) for liquefaction potential assessment.

Table 1. Input parameters of CPT-based SP for calculating LSI values (adopted from Juang et al. 2002)

Parameter Value
PGA 0.19¢g
My 7.25
Ya 17.9 kN/m?
Vi 18.8 kN/m’?
P, 101.325kPa

©0.0-150
+ 150-350
o 350-650
Study Area
[ Hills of Baguashan!

el R R v

T

Figure 1.Yuanlin map showing the layout of CPT and the corresponding calculated LSI values

4.1 Characterizing Statistical Uncertainty of CRF Parameters

For Bayesian learning of CRFparameters, relatively large ranges (i.e., (0, 100], (0, 10], (0 km, 60 km]) fory, o,
and A are adopted to define the uniform prior distribution (e.g., Cao et al. 2016). Based on the diffuse prior
distribution and 40 values of the logarithmic LSI, 10,000samples of & (i.e., M = 10,000) are drawn from Eq. (4)
using the Metropolis-Hastings algorithm. Figure 2 shows the scatter plots and histograms of the 10,000 &
samples, based on which the estimates including mean value, standard deviation, and coefficient of variation
(COV)for each parameter arecalculated, as shown in Table 2. Because only a limited number of CPT soundings
is available, the statistical uncertainty on € is considerably large, particularly for o and A,whose COVsbased on
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posterior samples are relatively large (i.e., 0.29 and 0.48). Moreover, compared with x and o, the posterior
marginal distribution oflis more dispersed within the prior range (i.e., (0 km, 60 km]), implying that A is more
difficult to identify (e.g., Ching et al., 2016). Therefore, it is inappropriate to ignore the statistical uncertainty of
0 for CRF simulation. It is reasonable to incorporate the statistical uncertainty on #into thespatial
variabilitycharacterization through CRF.

1000
0
25 50
1
R R 3 Table 2. Statistics of posterior samples for CRF parameters
1.0 v -| 500 P > P
% : 0 Mean value 3.35 0.74 32.0 km
25 50 05 1.0 15 o : : :
o Standard deviation 0.43 0.21 15.3 km
5018 S| so -] 500 Coefficient of variation 0.13 0.29 0.48
5| S | o5 | S
; A ;
25 50 05 1.0 1.5 2550

A

Figure 2. Posterior samples and marginal distributions of
CRF parameters in Yuanlin area

4.2 Mapping LSI in Yuanlin Region
Based on the & samples obtained in the preceding subsection, the corresponding 10,000samples of ¢ are

simulated using Eqgs. (6) and (7), for which the region is discretized as 201 by 201 square elements. As a result,
10,000 realizations of ¢ can be efficientlysimulated from the proposed method.In implementation, the large

covariance matrix with the size of 40,401 by 40,401 can be decomposed as two small matrixes with the
dimension of 201 by 201.Then, they are transformed into the LSI field by taking the exponential. Each
simulation represents one realization of LSI values given a & sample, which quantifies the spatial variability of
LSI across a region. According to 10,000 ¢ samples, statistics (including mean value and STD) can be calculated

for facilitating regional liquefaction potential assessment.

Study Area A
(] Hills of Baguashang S5
0 1

2\ P

P i L

(a) mean values (b) STDs
Figure 3. Results of CRF simulations for LSI using the proposed method in Yuanlin area

Figure 3(a) and 3(b) show the mean value and STD of LSI over the region by the color scale, in which the
CPT locations are also plotted for reference. Forcomparison,Figure 3(c) plots the STD of LSI based on the most
probable values (MPVs) of 6, i.e., u=3.40, o= 0.45, and A =9.98 km.The spatial pattern of the predicted mean
value of LSI shown in Figure 3(a) is generally consistent with the calculated LSI values shown in Figure 1. This
indicates that the proposed method can make proper use of the site information.As shown in Figure 3(b), it is
observed that the STD around testing locations is relatively small and reaches to zero at CPT locations. This
indicates that the proposed method depends highly on the calculated LSI values and the predicted LSI values
around CPT locations are more reliable.In addition, considering that the statistical uncertainty of & has been
incorporated into the spatial variability characterization, the STD of LSI away from CPT locations is relatively
large (see Figure 3 (b) and (c)). Without considering the statistical uncertainty, the prediction uncertainty might
be underestimated.
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5 Summary and Conclusion

This paper presents a Bayesian framework for probabilistic characterization of the regional liquefaction potential
based on a limited number of cone penetration test (CPT) data in a liquefaction-prone region. Within the
proposed framework, the statistical uncertainty and spatial variability are, explicitly and quantitatively,
considered for regional mapping the liquefaction severity index (LSI). To tackle the computational issue for
conditional random field (CRF) simulation at a large region, simple Kriging-based CRF is adopted herein, with
which Kronecker product can be used for efficient CRF simulation without the need of latticed locations of CPT
soundings. The proposed method is implemented using the ancestor sampling method (ASM), and it was
illustrated using real CPT data at Yuanlin, Taiwan. Results showed that the proposed approach deals, rationally,
with the statistical uncertainty and spatial variability for characterizing LSI. Based on a limited number of CPT
soundings, the statistical uncertainty on CRF model parameters is inevitable. Thus, the prediction uncertainty on
LSI might be underestimated only using a single set &, which ignores the statistical uncertainty of CRF
parameters in simulation.
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