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Abstract:Probabilistic inversion is conducted for the identification of the boundary configuration of a piping zone, which
usually develops in soil structures, such as levees. However, the spatially distributing hydraulic conductivity in the soil
structure is also unknown and has a significant influence on the estimation of the piping zone. Bayesian inference of both the
spatially distributing property, hydraulic conductivity, and the boundary geometry of the piping region become
computationally expensive. It is the case even if modern and statistically efficient gradient-based Markov Chain Monte Carlo
(MCMC) algorithms called Hamiltonian Monte Carlo (HMC) are implemented. To circumvent this problem, the Bayesian
Approximation Error (BAE) approach is employed, by which only the (interesting) piping zone boundary is considered as the
target of inversion with the (uninteresting) hydraulic conductivity field fixed. The BAE approach is incorporated into
numerical procedures of HMC for boundary estimation in a synthetic steady seepage flow field. Observation data of the
hydraulic head and the total outward normal flux at discrete instances in time are numerically prepared. Inversion results are
presented with the comparisons of the posterior marginal distributions for the cases with/without the approximation error
considered.
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1 Introduction

Maintenance of embankments, such as dams, levees and irrigation tanks (relatively small embankment for
irrigation purpose), continues to be an important task for prevention and mitigation of natural disasters in Japan,
which is one of the most earthquake-prone country in the world. Piping can be a threat for the maintenance of the
embankment because it unknowingly develops within the earthen structure and significantly affect its
mechanical stability. According to the statistical investigation of Foster et al. (2000), piping accounted for
approximately 40% of failures and accidents of world-wide embankment dams. However, at present, it is
difficult to detect the configuration of the piping zone accurately, because of a lack of sophisticated and
accessible techniques to identify complicated shapes of subsurface cavities. The identification of the subsurface
cavity can be regarded as a geometrical inverse problem.

This article presents a method for solving above-mentioned geometrical inverse problems. The method is
based on the Bayesian approach and enables the configuration of a subsurface cavity, such as piping zone, to be
identified through the observation of hydraulic head and discharge rate of seepage water. Because seepage water
flow concentrates into the piping zone due to its higher hydraulic conductivity and the configuration of the
highly permeable region changes the spatial distribution of the hydraulic head, the measurement of the hydraulic
head and the discharge rate provides informative observation data for this inverse problem. Although the seepage
flow problem is considered in this article, it should be noted that the method proposed herein is not limited to the
specific problem.

Figure 1 illustrates the target inverse problem, in which there is a developing cavity of the piping zone with
unknown length and thickness to be identified. The hydraulic head spatially distributes under boundary
conditions as well as spatially varying hydraulic conductivity. Since the spatial distribution of the hydraulic
conductivity is usually unknown, estimation of the configuration of the piping zone requires a geometrical
inverse analysis identifying the boundary shape of the seepage flow domain under the unknown hydraulic
conductivity. This means that simultaneous identification of the seepage flow boundary and the spatial field of
the hydraulic conductivity is needed, but it is a computationally expensive task even though a powerful
technique for such simultaneous inverse analysis has been proposed by Koch et al. (2021) with the aid of
statistically efficient gradient based Markov Chain Monte Carlo (MCMC) algorithms called Hamiltonian Monte
Carlo (HMC).
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Figure 1.Domain of seepage water flow with a piping zone

The Bayesian Approximation Error (BAE) (Kaipio and Somersalo, 2007; Kolehmainen et al., 2011)
approach is employed wherein the (uninteresting) hydraulic conductivity is not to be identified and only the
(interesting) piping zone boundary becomes the target of inverse analysis. The ensuing approximation error is
accounted for in the inversion process and is premarginalized in terms of a Gaussian approximation for the joint
probability density of the parameters describing the boundary and the approximation error. This article presents
the results of the inverse analysis identifying the boundary of the piping zone with or without the approximation
error considered.

2 Forward Problem, Hamiltonian Monte Carlo (HMC) and Bayesian Approximation Error (BAE)

The well-known steady seepage flow problem in a saturated porous domain is adopted as the forward problem in
the Bayesian approach and its governing equation is given as

(k(x)%] =0 (1

wheres and k denote the hydraulic head and conductivity, respectively, and xi(or x) means the Cartesian
coordinates.The discretized form of Eq. (1) by FEM is written in the following form with the observation
equation.
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where K, h, q, y, Hs, m and e denote the global hydraulic conductivity matrix, the nodal hydraulic head and flux
vectors, the vector of observation data, the measurement model matrix, the state vector and the observation noise,
respectively. The state vector mis obtained by solving the first equation in Eq. (2) and the matrix Hs works as an
operator which extracts the values of the hydraulic head or the flux at the observation points from the state vector
m.

The boundary configuration of the piping zone is parametrized with a parameter vector 6, such as length /
and width w. Then, the parameter € is the probabilistic variable for Bayesian inversion, which obeys the
following posterior distribution.

0)p(9)
0)p(0)do

— p(yl:n
jp(yl:n
where yindenotes the observations yi, y2, ...,pnat different discrete times points. HMC is a variant of MCMC,

which can efficiently generate samples (realizations)obeying a certain probability density distribution with an
inherent structure similar to the Hamiltonian dynamics. In HMC, the Hamiltonian H is defined as

p@|y.,) o« p(I.,|0)P(0) 3)

1 T -1
H(0,p)=(0)+K(p). ¢0)=~logp(@|,,). K(p)=7p' M p )

where p, @, K and M are called momentum, potential energy, kinematic energy and mass matrix, respectively.
The algorithm of HMC is summarized as below.
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Algorithm of HMC

Give 0° as the initial value of
Sample p° ~ N(0, M)
Forj=1toJ
Update @/~ and p/~! into @ and p, respectively by solving
dp__OHO.p)_ op0) dp_0H(O,p)
dr o0 o0 dr op
Calculate acceptance probability
o= min{l, exp(~H(@,~p)+ H(0H,pf‘l))}
Sample u~U(0,1)

Set @/ «<— @ when u<a , 0/ < 0" when v>a
End

:Milp

In the above algorithm, the gradient of the potential energy, 0@/ 06 is required for proposing the next

sample. The calculation of the gradient is special to HMC, which is not include in typical MCMC methods,
andthe detailed numerical procedure for it can be found in Koch (2021).

The BAE approach makes the following change in the error part of the observation equation which
originally includes the observation noise e.

y=A0.k(x))+e=A0,k)+¢c+e ®)
&=A(0,k(x))—A0,k,) (6)

In Eq. (5),4(6, k(x)) denotes the value of the state variable computed at the observation points with the
boundary parameter® and the spatially changing hydraulic conductivity k(x), while 4(6, ko) means the value of
the state variable computed with the parameter  and a constant ko, i.e., spatially uniform hydraulic conductivity.
The error ¢ in Eq. (6) is involved with the approximation of the original prediction model A(6, k(x)) by the
simpler model 4(6, ko), and it can be evaluated in a statistical manner. It should be noted that an arbitrary value
of ko can be given by those who conduct the inverse analysis. Assuming the approximation error gandthe prior
distribution of @to be Gaussian, p(&|@)canbe obtained in a statistical manner throughevaluation of the joint
probability density p(&, €) as follows.

8‘0 ~ N(sw,l“dg) (7

g,=6+T,0,(0-0.), T =T +T,T, ®)

where ¢+, 6+, I'vand I':sdenote the means of ¢ and &, the variance matrix of €, and the covariance between & and
0, respectively. The derivation of Egs. (7)and (8)is referred toin Kolehmainen et al. (2011). Adopting Eq. (5) as
the observation equation, the arbitrary selection of the uniform hydraulic conductivity kobecomes possible and
the estimation of k(x) can be avoided.

p(€]8) given in Eq. (7) is needed when the likelihood p( y|0) relatedto Eq.(3) is evaluated as

p(»|0) = [ p(»|0.2)p(z|0)de ©)

Substituting Egs. (5) and (7) to Eq. (9), the following relationship is obtained, which is directly used for
computing the posterior distribution, p(0| ») in Eq. (3).

y[0~N(40. 1) +v.,.T,) (10)

vo=e+e,=e.+e+T, 0, (0-0.), T =T+, =T+ +I,[,T, (11)

where e« and I'. denote the mean and the variance matrix of the observation noise e.
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3 Numerical Analysis and Results

A numerical analysis for identifying a simple rectangular shape of the piping zone is presented in this
section. Figure 2 shows the finite element mesh and the boundary conditions of the problem considered here.
The computational domain covers 0.4 m in length and 0.32 m in width. The top right part has the piping zone
with the dimensions of / in length and w in width. The computational domain includes 5 points for the
observation of the hydraulic head and 6 sections for the measurement of the discharge rate (corresponding to g1
to gein Figure 2)at its right side. As for the boundary conditions, both the top and bottom sides do not allow
inflow or outflow of seepage water, the hydraulic head is imposed onto the left side, and the hydraulic head at
the right side and the boundary of the piping zone was kept at zero, which means the free inflow/outflow
boundary.
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Figure 3. Observation data (Left: Hydraulic head, Right: Discharge rate)

The observation data used for the inverse analysis are shown in Figure 3. Assuming the spatial distribution
of the hydraulic conductivity shown in Figure 2, /=0.15 m and w=0.05 m, and imposing the predetermined
hydraulic head onto the left side, the synthetic observation data were prepared (The average of the hydraulic
conductivity is almost 0.003 m/s). The horizontal axes in Figure 3 implies the discrete time points when the
observation or the measurement was conducted. The left plot in the figure corresponds to the observation data of
the hydraulic head, while the right plot exhibits those of the discharge rate. These data are produced by adding a
certain amount of noise to numerical results of the forward problem.

In order to construct the approximation error ¢, the following probability densities for the hydraulic
conductivity & (m/s) and the boundary parameter &= (w, /)’ (m) were assumed.
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k ~ N(0.004,0.002%) , w~ N(0.06,0.039%) , 7~ N(0.12,0.072%) (12)

Before the HMC computation starts, the forward analysis of Eq. (6) enables p(&|8) to be constructed with
the given probability densities shown in Eq. (12). For the sampling process by HMC, the probability density of
the observation noise e becomes necessary. For simplicity, the normal distribution with the mean of 0 and the
standard deviation of 15% of the observed value was assumed for each component of the observation noise e.
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Figure 3. Markov chains for & and &, corresponding to widthwand length / (HMC with BAE)
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Figure 4. Markov chains for 8, and @, corresponding to to width w and length / (HMC without BAE)

The inverse analysis for identifying the width w and the length / of the piping zone was carried out, giving
k0=0.004 m/s to the spatially uniform field of hydraulic conductivity. Figure 3 shows the 5,000 Markov chain
samples for & (=w) and 62(=/) computed by HMC with the approximation error considered. It is seen in the
figure that the width w and the length / are nicely identified. On the other hand, Figure 4 provides the Markov
chains for 6 (=w) and @ 2(=/) without consideration of the approximation error, which implies that & was
removed from Eq. (5). As shown in the figure, the width & (=w) is not accurately estimated though the accuracy
of the length 6x(=/) is sufficient. The above results indicate that the parameter estimation can be successfully
conducted if the approximation error is properly considered, even though unknown material properties
(hydraulic conductivity in this case) are included in the forward model.
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