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Abstract:In engineering practice, soil liquefaction potential is usually evaluated following the cone penetration test (CPT)-
based simplified liquefaction triggering procedure. It is widely accepted that CPT-based liquefaction triggering correlation
developed from the limited case histories database contains significant model uncertainty. In addition, characterization of
spatial distribution of potentially liquefied soils is critical for liquefaction risk assessment and mitigation. However, soil
liquefaction potential at untested locations interpolated from limited CPT measurements may involveconsiderable
interpolation uncertainty. On the other hand, soil spatial variability can greatly affect the consequences of liquefaction.
Neglecting these uncertainties and soil spatial variability may lead to unreliable or even biased liquefaction assessment
results. To tackle this challenge, this paper presents a CPT-based probabilistic liquefaction assessment method in a vertical
cross-section, which is able to simultaneously consider above-mentioned uncertainties and soil spatial variability. The
presented method is demonstrated and validated using real CPT data from Wildlife Liquefaction Array (WLA), USA. The
illustration example indicates that the presented method can properly characterize the spatially distributed soil liquefaction
potential and estimate the probability of liquefaction at each point within a cross-section.

Keywords: Liquefaction potential; Uncertainty; Spatial variability; Compressive sampling
1 Introduction

In engineering practice, cone penetration test (CPT)-based simplified liquefaction triggering procedure is widely
used to evaluate soil liquefaction potential(e.g., Idriss and Boulanger 2008). It is widely acknowledged that
liquefaction evaluation results interpreted from limited CPT soundings contain a great deal of uncertainty (e.g.,
Christian and Baecher 2016). For example, CPT-based liquefaction triggering correlations are usually developed
based on the limited case histories database, and thus they involve considerable model uncertainty (e.g.,
Boulanger and Idriss 2016). Observations from recent earthquakes indicate that spatial variation of soil
liquefaction has significant effects on liquefaction-induced damages (e.g., Cubrinovski et al. 2011). However,
soil liquefaction is usually evaluated at limited CPT locations, and the spatial distribution of soil liquefaction
needs to be interpolated from sparse measurements, leading to interpolation uncertainty in liquefaction
evaluation results (e.g., Guan and Wang 2020; Guan et al. 2020). In addition, spatial variability of soil properties
may greatly affect liquefaction consequences (e.g., Guan et al. 2021). These lead to an important question in
liquefaction assessment: How to probabilistically characterize the spatial distribution of soil liquefaction
potential for a given earthquake scenario with proper consideration of liquefaction triggering model uncertainty,
interpolation uncertainty and soil spatial variability.

During the past two decades, several CPT-based probabilistic liquefaction assessment methods have been
developed (e.g., Juang et al. 2002;Moss et al. 2006). Recently, Idriss and Boulanger (2016) evaluated updated
liquefaction case histories database and developed a CPT-based probabilistic liquefaction triggering model.
Despite these studies, it is still a challenging task to simultaneously consider above-mentioned uncertainties and
soil spatial variability in liquefaction assessment. To tackle this challenge, this paper presents a CPT-based
probabilistic liquefaction assessment method in a vertical cross-section based on the work by Guan and Wang
(2022). The presented method is illustrated using real CPT data from Wildlife Liquefaction Array (WLA), USA.

2 CPT-based probabilistic liquefaction assessment method

The presented method leverages on anon-Gaussian non-stationary random field generator which combines
Bayesian compressive sampling/sensing (BCS) and Markov Chain Monte Carlo (MCMC) simulation. BCS-
MCMC random field generator can directly uses limited measured soil properties as input to generate many
random field samples of soil properties cross-section with high spatial resolution as output, without the need of
pre-determining the types of trend function or auto-correlation function (e.g., Zhao and Wang 2020). CPT-based
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liquefaction triggering model uncertainty is considered using a Gaussian error term, & proposed by Idriss and
Boulanger (2016). Interpolation uncertainty and soil spatial variability are considered based on the random fields
of soil liquefaction resistance. To simultaneously consider the above-mentioned uncertainties and soil spatial
variability in liquefaction assessment, Monte Carlo simulation (MCS) is used to repeatedly draw random
samples of ¢ from its prescribed probability distributions and random field samples of soil liquefaction
resistance rom limited measurements, which leads to probabilistic liquefaction assessment results. In the
presented method, soil liquefaction potential is evaluated following the simplified liquefaction triggering
procedure, in which soil liquefaction resistance is quantified in terms of cyclic resistance ratio, CRR, and
earthquake loading is expressed in terms of cyclic stress ratio, CSR (e.g., Seed and Idriss 1971). The liquefaction
potential of soils is quantified in terms of factor of safety, FS against liquefaction, which is a ratio of CRR to
CSR, i.e., FS = CRR/CSR Fig.1 illustrates the presented probabilistic liquefaction assessment framework, which
consists of 10 steps.

Step 1: Compute the corrected equivalent clean sand CPT tip resistance,
g, .. for each set of CPT measurements.

{

Step 2: Generate a random sample of error term, £ in Eq. (4).

Step 3: Estimate cyclic resistance ratio, CRR for each measured ¢, data
using the generated sample of ¢ and Eq. (4).

!

Step 4: Generate a CRR random field sample from limited CRR data points
using Bayesian compressive sensing (BCS) and Markov Chain Monte Carlo
(MCMC) simulation.

Step 5: Calculate earthquake loading in terms of cyclic stress ratio, CSR for
a given earthquake scenario.

Step 6: Calculate the factor of safety, FS, against liquefaction within the
cross-section using the generated CRR random field sample and estimated
CSR.

Step 7: Repeat Step 4 to Step 6 many times (e.g., 100 times).

Step 8: Repeat Step 2 to Step 7 many times (e.g., 100 times).

Step 9: Perform statistical analysis for many (e.g., Ng = 100 x 100 = 10,000)
generated FS cross-sections.

Step 10: Obtain the spatial distribution of liquefaction probability within the
cross-section.

Figure 1.Framework of the presented probabilistic liquefaction assessment method

In Step 1, CPT measurement data including cone tip penetration resistance, ¢, and sleeve friction, f, are
collected from each CPT sounding. Then, the corrected equivalent clean sand tip resistance, ¢, is calculated

for each set of g, and f, using the following equations (e.g., Idriss and Boulanger 2016):
Gones =Gen TGy (1)
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where p, = 1 atm = 100 kPa; o] = effective overburden stress; Based on regional or local-specific
relationships, fines content (FC) may be estimated from the soil behavior type index, /. which is calculated
using CPT ¢, and f, data (e.g., Idriss and Boulanger 2016).

In this study, liquefaction triggering model uncertainty is considered based on a probabilistic model
proposed by Idriss and Boulanger (2016):
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where ¢1s a Gaussian random variable with zero mean and a standard deviation of 0.2. CRR

M,,=75,0,=1 atm
represents the cyclic resistance ratio of soils at earthquake magnitude, M = 7.5 and ¢’ =1 atm. In Step 2, a
random sample of ¢ is generated from the normal distribution with zero mean and a standard deviation of 0.2. In
Step 3, using Eq. (4) and the generated ¢ sample, CRR of soils for a given earthquake scenario can be calculated
as (e.g., Idriss and Boulanger 2016):

CRR = CRRMW:TS,J",:I atm x MSF x Ko‘ (5)
Magnitude scaling factor, MSF and overburden correction factor, K_are expressed as:
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Using the following equations, CRR of soils can be estimated at locations with CPT measurements. In order
to characterize the spatial distribution of CRR within a cross-section, BCS-MCMC random field generator is
adopted to generate many CRR random field samples directly from limited measured CRR data points. Note that
the generated random field samples of CRR reflect both soil spatial variability and statistical uncertainty induced
by interpolation of limited CRR measurements. Detailed information about BCS-MCMC can be referred to Zhao
and Wang (2020). In Step 4, a random field sample of CRR cross-section is generated from limited CRR data
points using BCS-MCMC. In simplified liquefaction triggering procedure, earthquake loading in terms of cyclic
stress ratio, CSR for a given earthquake scenario is calculated as (e.g., Seed and Idriss 1971):

CSR = 0.65["““#}{03 jrd (10)
g N\o!

where g= gravitational acceleration; o, = total overburden stress; a = peak ground acceleration at surface; 7,

is a shear stress reduction factor which is a function of depth, z(Idriss 1999):
ry =exp(a(2)+ f(2)M,,)
a(z)=-1.012—1.126sin(z/11.73+5.133) (11)

B(2)=0.106+0.118sin(z/11.28+5.142)

Using Egs. (10)-(11), CSR at each point of the cross-section can be obtained. In Step 6, FS at each point
within the cross-section is calculated using the generated CRR random field sample and estimated CSR.To
incorporate interpolation uncertainty and soil spatial variability, CRR random field sample is repeatedly
generated for calculating FS cross-section. Therefore, Steps 4-6 are repeated many times (e.g., 100 times) in Step
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7. Similarly, to consider the model uncertainty, ¢ is repeatedly generated from the normal distribution with zero
mean and standard deviation of 0.2 for calculating FS cross-section. Thus, Steps 2-7 are repeated many times
(e.g., 100 times) in Step 8. In Step 9, statistical analysis is performed for many (e.g., Ns = 100 x 100 = 10,000)
generated FS cross-sections, leading to the full probability distribution of FS at each point within the cross-
section. Using the obtained probabilistic results, the probability of liquefaction, P, over the cross-section can be
quantified using the following equation:
lig
B, (x,z)= ]\?,Z x100% (12)

B

where B, (x,,z) represents liquefaction probability at a point (x1, z); N )Zqz indicates the number of generated FS

smaller than 1 at the point (x1, z).

3 Illustration example

In this section, the presented probabilistic liquefaction assessment method is applied to Wildlife Liquefaction
Array (WLA), USA during the 1987 Superstition Hills earthquake with My = 6.6 and g = 0.21g. Site

investigation results indicate that the site mainly consists of a 3m-3.5m thick non-liquefiable silty clay layer at
the ground surface, which is underlain by a 3.5mthick granular soil layer with a saturated unit weight of y_ =

18kN/m?* (e.g., Holzer and Youd 2007). The granular soil layer may be liquefied during the Superstition Hills
earthquake. The groundwater table is at a depth of 1.2m. Fig. 2illustrates a typical cross-sectionA1-A2 of this
site by a solid line. Cross-section A1-A2 has a length of 43m and a depth of 3.5m to 7.0m.Five CPT soundings
including CPT-1Cg, CPT-3Cg, CPT-4Cg, CPT-5Cg, and CPT-7Cg were performed within this cross-section, as
shown in Fig. 2 by solid triangles.

A crr soundings @ sand boil

== Cross-section
Al A2 . Cracks

ALAMO RIVER

Figure2.Layout of five CPT soundings at the Wildlife Liquefaction Array (after Holzer and Youd 2007)

In Step 1, CPT measurement data including ¢, and f, are collected from each CPT sounding, which are

s

obtained directly from NEES@UCSB website at http: //www.nees.ucsb.edu (accessed March8, 2022). Then, the
corrected equivalent clean sand tip resistance, g,  is calculated using the Egs. (1)-(3). Fig. 3 shows the
calculated g, . for each CPT sounding. In Steps 2-4, a CRR random field sample is simulated for a given
generated & using BCS-MCMC generator. In Step 5, CSR within the cross-section A1-A2 is calculated using
Egs. (10)-(11) for a_, =0.21g, as illustrated in Fig. 4. In Step 6, FS within the cross-section can be obtained for
a given CRR random field sample and estimated CSR. To incorporate model uncertainty, interpolation
uncertainty and soil spatial variability, in Steps 7-8, many random samples of & and CRR cross-section are
repeatedly generated to produce many FS cross-sections. In this study, Ns = 10,000 FS cross-sections are

generated. The mean and coefficient of variation (COV) of generated FS cross-sections are shown in Fig. 5,
respectively.
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Figure 3.Estimated corrected equivalent clean sand tip resistance, (g,,, ), for each CPT sounding
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Figure 4.Estimated cyclic stress ratio, CSR in cross-section A1-A2
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(b) Coefficient of variation (COV) of 10,000 generated FS samples
Figure 5.Cross-section of factor of safety, FS, against liquefaction generated from five CPT soundings

Using Eq. (12), the liquefaction probability at each point of cross-section A1-A2 can be estimated, as shown
in Fig. 6. It is found from Fig. 6 that the liquefaction probability of most points within the cross-section is larger
than 50%, which indicates that a substantial portion of the granular soil layer is expected to be liquefied within
this cross-section during the earthquake. Such liquefaction assessment results are consistent with the site
observations during the Superstition Hills earthquake. As reported by Holzer and Youd (2007), widespread sand
boils and ground crack were observed at this site, as shown in Fig. 2.
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Figure 6.Liquefaction probability, Pjy, in cross-section A1-A2
4 Conclusion

This paper presented a CPT-based probabilistic liquefaction assessment method, which is able to simultaneously
consider liquefaction triggering model uncertainty, interpolation uncertainty and spatial variability of soil
properties. Liquefaction triggering model uncertainty was considered based on the probabilistic model proposed
by Idriss and Boulanger (2016). Random field samples of CRR were generated using BCS-MCMC to account
for interpolation uncertainty and soil spatial variability. The presented method was demonstrated using real CPT
data from Wildlife Liquefaction Array (WLA), USA. The illustration example indicated that the presented
method can properly characterize the spatially distributed soil liquefaction potential and quantify the probability
of liquefaction at each point within a cross-section.
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