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Abstract: A major challenge of most geotechnical engineering projects is soil data scarcity. This paper aims at extending
prior knowledge on shear strength and compressibility of Glaciolacustrine sediments of Northern Germany. Based on triaxial,
incremental loading oedometer and complementary laboratory tests on specimens from 13 different locations, the inherent
variability of shear strength and compressibility is analyzed; typical ranges and coefficients of variation are established. Prior
to variability analysis, k-means clustering, a simple machine learning algorithm, is applied to distinguish soil types by their
descriptive properties. This data-driven methodology serves the multivariate character of soil data and allows to provide data
on the variability of soil strength and compressibility more accurately. It was found that plasticity index and clay content can
be considered to distinguish different soil types. Moreover, it can be shown that mean and variability of shear strength and
compressibility are clearly affected by the dominant soil type.
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1 Introduction

A major challenge of geotechnical engineering is soil data scarcity or the “the curse of small sample size”
(Phoon, 2017) which impedes the selection of characteristic values based on statistical analyses. Commonly, this
issue is tackled by experience, engineering judgement and local data repositories. But even with these resources,
as outlined by Bond (2011), engineers may not be well trained at predicting the appropriate degree of caution
needed to select the characteristic value of a geotechnical parameter. Thus, although still not integral part of
everyday engineering practice, the advantages of reliability-based methods such as Bayesian inference in
conjunction with prior knowledge are increasingly recognized to account for uncertainty inherent to soil
parameters (e. g., Phoon and Kulhawy 1999a, 1999b, Wang et al. 2016, Phoon 2017).

Despite their local uniqueness (Phoon 2019), point statisticsof soils have been investigated by various
authors, often for particular applications (e. g. Lumb 1966, 1974, Phoonand Kulhawy 1999a, 1999b, Uzielli et al.
2006). However, as pointed out by Lofman and Korkiala-Tanttu (2019), typical ranges of soil parameters
provided in literature can be improved by accounting for local soil characteristics, e. g. materialgenesis. For
North German Glaciolacustrine sediments, few information on typical values have been published (Ehlers et al.
2011, Kausch 2020), which, do not cover the materials’ inherent variability.

The presented work focuses on the analysis of shear strength and compressibility of Glaciolacustrine
sediments of Northern Germany. Based on triaxial, confined compression and complementary laboratory tests
from 13 different locations the inherent variability of shear strength and compressibility is analyzed; typical
ranges and coefficients of variation are established. Prior to variability analysis, a simple machine learning
algorithm is applied to distinguish different sediments on the basis of their classification properties.

2 Data and methodology

2.1 Characteristics of Glaciolacustrine sediments in Northern Germany

Besides Marine clay and boulder clay, Glaciolacustrine sediments are typical soils in Northern Germany. These
sediments were deposited into lakes formed from glacial erosion or deposition. In the area of Northern Germany
three glaciation periods are known: Elster glaciation, Saaleglaciation, Weichsel glaciation; the oldest glaciation,
the Elsterian, reached furthest south. Only in Western Europe, the ice sheet of the second glaciation, the Saalian,
advanced beyond the Elsterian limits. During the last glaciation, the Weichselian, the ice sheet did not cross the
Elbe River (Ehlers et al. 2011).

Glaciolacustrine sediments are cohesive soils. By grain size analysis, they are classified as weakly sandy to
sandy clays or silts (DIN EN ISO 14688-1:2020-11). Based on their plasticity index /p and liquid limit wy, they
are classified as CL, OL,ML or CH (DIN 18196:2011-05). With wr ranging from 20 % to 90 % (on average
46 %), the plasticity of either clay and silt ranges from low to high. Due to local lignite streaks and lenses,
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Glaciolacustrine sediments are weak to moderate organic; annealing losses between 1 % and 18 % (on average
4 %) are found.

2.2 Shear strength and compressibility properties

This section briefly introduces the most important tests and parameters used for subsequent analyses. For a
detailed description of the employed laboratory tests, it is referred to the respective standards. A summary of the
employed test data is provided in Table 1. For few locations limited data are available emphasizing the
importance of prior knowledge for future engineering projects.

Table 1. Classification properties of the studied sites (assessment of inherent variability).

Site Depth Specimens  Clay content ~ Organic content ~ Water content w,  Plasticity index /p
-- inm -- in % in % in % --

Brunsbiittel 37-40 3 8.0-37.0 2.6-5.6 18.3-243 0.12-0.31
Zerben 6-13 2 4.0-52.0 5.0 26.2-359 0.16-0.48
Levensau 8/37-42 4 4.0-50.0 1.9-42 19.2-20.3 0.13-0.32
Kiel-Holtenau 15-19 2 25.0-70.0 22-38 18.6-21.3 0.31-0.32
Kiel-Friedrichsort 17 /32 -33 3 14.0 - 26.0 24-25 322 0.13

Hunte 5-14 2 64.0 -76.0 73-7.17 32.2-343 0.43-0.51
Steinhavel 4-10/21 3 13.0-38.0 1.3-79 24.5-29.7 0.16-0.53
Ahse 6 2 31.0-36.0 40-5.1 21.9-28.0 0.22-0.31
Lauenburg 5-45 42 5.0-65.0 1.0-10.4 27.5-34.8 0.06 - 58.2
Niederfinow 2-25 17 3.0-27.0 2.1-53 18.5-275 0.04 - 0.33
Witzeeze 10-30 5 11.0-36.0 42-6.2 19.6-24.7 0.09-0.22
Ems 3-15 15 5.0-21.0 24-175 21.4-32.0 0.06-0.31
Niederfinow 10 - 15 2 9.0 - 40.0 -- 21.6-24.7 0.66

Note: The standards valid at the time of testing apply. The tests were conducted between 1997 and 2013.

The machine learning algorithm is first applied to selected descriptive soil parameters. The liquid limit ww is
determined via the fall cone test; the plastic limit we by repeated rolling of an ellipsoidal-sized soil mass
(DIN EN ISO 17892-12). The clay content is obtained from sieve and sedimentation tests (DIN EN ISO 17892-
4). The organic content results from loss-on-ignition tests (DIN 18128).

By means of incremental loading oedometer tests (DIN EN ISO 17892-5), the compressibility of the soil is
investigated. A cylindrical sample is deformed uniaxially. A metal ring prevents the specimen from deviating
sideways. A specimen was commonly tested against eight load levels which were doubled after each step and
ranged from 17.1 kN/m? to 1021.1 kN/m?. Then, the load was relieved to 17.1 kN/m?, before the specimen was
reloaded to 2040.4 kN/m?. In total, results of 90 tests are available for analyses. From the initial loading, the
stress-dependent constrainedmodule Es is obtained as the ratio of change in stress and change in vertical
deformation. In the same manner, the stress-dependent constrained reloading module Es; is obtained from the
reloading cycle.

Amongst others, triaxial tests (DIN EN ISO 17892-9) allow to determine the effective shear parameters,
effective cohesion ¢’ and effective friction angle ¢’. The presented data encompasses isotropic consolidated
drained triaxial compression (CIDC) and isotropic consolidated undrained triaxial compression (CIUC) tests. In
total, 88 tests with three sub-specimens each were conducted; 33 tests of CIUC and 55 tests of CIDC.

2.3 K-means clustering

During field classification, different sedimenttypes may not always be clearly distinguishable or it is ambiguous
which type dominates the specimen. However, this distinction may be important to provide accurate information
on the soil characteristics. Machine learning tools can assist in classifying sediments based on objective criteria.

K-means clustering is one of the simplest unsupervised machine learning algorithms. It belongs to a family
of algorithms which were developed independently by researchers from different disciplines (MacQueen 1967,
Steinhaus 1956, Lloyd 1982). Main advantages are its simplicity and its scalability to different sample sizes. K-
means clustering partitions » data points in & clusters based on their Euclidean distance to the nearest mean, the
cluster centroid.

In simplified terms, the algorithm has three main steps: Firstly, the number of cluster centroids must be
provided by the user. The learning process then starts with a group of randomly selected centroids. Subsequently,
the algorithm changes the positions of the centroids iteratively until either the difference between old and new
centroids reaches a threshold or the defined number of iterations has been reached. The new centroids are
computed as the mean value of all of the samples assigned to each previous centroid (Pedregosa et al. 2011).

The presented k-means clustering analyses use Python with the machine learning tools provided by the
package scikit-learn(Pedregosa et al. 2011). To account for the different scales of the soil characteristics, the data
was normalized before running the analyses. For normalization the L? vector normalization scheme was
employed, which is based on the distance of the vector coordinate from the origin of the vector space.

755



756

Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

3 Prior knowledge on compressibility and shear strength

3.1 Results of k-means clustering analyses

Figure 1visualizes the results of the k-means clustering analyses. Based on normalizedwr and normalized/p two
clusters are identified. When using normalized clay content and normalized/p three clusters are found. In the case
of the two-cluster solution, one cluster features material of moderate wi and moderate /p, whereas the other
group features material of high wr and high /p. The three-cluster solution is divided in clusters of low, moderate
and high clay content and /p.
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Figure 1. Results of K-means clustering analyses; descriptive properties of the Glaciolacustrine sediments are normalized.

The clusters are validated using further data characteristics. It can be shown that the two-cluster solution
corresponds well with the stratigraphic units (Figure 2). In Casagrande’s plasticity chart, it can be observed that
sediments that were deposited during Weichsel and Saale glaciation are classified as Group A; sediments
deposited at the end of the Elster glaciation are classified as Group B. Weichselian and Saalian sediments cannot
be clearly distinguished in Casagrande’s plasticity chart. Additional parameter investigations did not provide a
satisfactory differentiation either. Reasons for this may be, e. g., uncertainties introduced during testing.
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Figure 2. Two-cluster solution plotted against Casagrande’s plasticity chart.

The presented k-means clustering analyses show promising results. Yet, it must be noted that the available
data of Elsterian sediments primarily contains specimens of the so-called Lauenburg clay, which is a rather
distinctclay with varying amounts of silt. In the case of the Saale and Weichsel sediments, the stratigraphic units
cannot always be gathered from the geotechnical reports; for single specimens, no information on stratigraphy is
available. Since bedload analyses were only carried out in few cases,the existing classification is based on the
judgement of senior engineers who are familiar with the regional geology. Still, this may result in erroneous
categorizations. Furthermore, it should be noted that k-means clustering is a simplealgorithm which assumes that
data belonging to a cluster are located circular around the centroid. However, the clusters may have different
shapes.

The differentiation into three clusters cannot be justified with the existing data. This does not necessarily
mean that this classification is not accurate, but, at present, it is not clearly supported by the existing data. In the
following, the variability of Glaciolacustrine sediments is thus analyzed within the two clusters (see Table 2).
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Table 2.Point statistics of classification propertiesfor the two detected clusters.

Clay content Organic content wi, wp Ip
in % in % in % in % in %
Group A (Weichselian / Saalian sediments)
count 61 43 61 53 53
mean 16.44 3.84 37.38 21.18 18.98
standard deviation (std) 14.21 1.82 10.23 7.02 9.01
coefficient of variance (COV) 0.86 47.24 27.36 33.16 47.49
Group B (Elsterian sediments)
count 18 8 18 18 18
mean 53.47 6.52 75.56 27.02 48.54
standard deviation (std) 14.72 2.65 7.90 5.25 5.61
coefficient of variance (COV) 0.28 40.64 10.45 19.43 11.55

3.2 Typical ranges of mean and variability of compressibility properties

Due to the geological history of origin, it can be assumed that the material was covered by a 500 m to 1000 m ice
cover. Thus, the material is geologically preloaded and over-consolidated. On average, a large variability of Es:
is observed within one load level. Among other things, this may be due to inhomogeneous soil specimens and
the limited specimen geometry. The water content of the test specimens at the start of the test ranged between
15 % and 40 %; the porosity ranged between 30 % and 75 %.

A linear least-squares regression was conducted to determine the stress-dependent Esras a function of the
mean soil stress om(see Figure 3). R? and the mean standard errors (MSE) of the regression parameters are used
as a measure of how well the observed outcomes are predicted by the model. A moderate fit is observed as a
result of strongly scattering measurements. In the two groups, R? is neither significantly reduced nor increased
compared to the complete data (Table 3). Thus, there is no loss of fit while the explanatory power of the
regressions increases.
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Figure 3. Stress-dependent constrained reloading modulus £, over mean soil stress om With 95 % confidence interval
(grey shaded areas) of the regression. The dashed lines indicate potential characteristic values.

The variability of the constant b expressed via the MSE is higher in Group A than in Group B, whereas the
MSE of the slope a is the same in both groups (see Figure 3 and Table 3). Another measure for the variability is
the sum of squares total (SST) which is the squared differences between the observed dependent variable and its
mean. In simple terms, it can be considered as a measure of the total variability of the dataset while considering
its linear trend. In the case of the herein presented investigations, the SST is the largest in the total data set
(SST =494526), slightly smaller in Group A (SST =468032) and significantly reduced in Group B
(SST =3507).

For the definition of characteristic values in engineering practice, the presented equations may be shifted
either parallel or slightly inclined along the y-axis until they meet the desired safety level. One potential
approach is to add and subtract the MSE to and from the mean values of a and b, see dashed lines in Figure 3.
This allows to account for the uncertainty associated with the regression. Naturally, the uncertainty in the
complete data set and in Group A is larger than in Group B. Due to the variability of test results,this approach
may yield a too optimistic or too conservative estimate. Depending on the task at hand, in practice, one might
therefore choose characteristic values based on engineering judgment.

In summary, Figure 3 and Table 3 illustrate that the differentiation of stratigraphic units by means of cluster
analyses allows to provide soil characteristics more accurately. Without differentiation the compressibility of
Group A sediments is likely to be underestimated. For Group B, on the other hand, the increase of Ei: and its
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variability are likely to be overestimated. If the mean minus the standard error of a in Group B is considered, it
can even be concluded that the increase, i. . the dependence of Es; on om, is not significant.

Table 3. Regression statisticsfor linear regression with Es, [KN/m?|=a o, + b.

Parameter a b R?
Complete data set
mean 0.03 36.84 0.21
mean standard error (MSE) 0.01 5.27 --
Group A (Weichselian / Saalian sediments)
mean 0.04 40.63 0.22
mean standard error (MSE) 0.01 5.95 --
Group B (Elsterian sediments)

mean 0.01 20.34 0.19
mean standard error (MSE) 0.01 3.46 --

3.3 Typical ranges of mean and variability of shear strength properties

Firstly, it is emphasized that the individual test results, e. g., stress-strain relation for each sample, should always
be consulted for the determination of shear parameters. In addition, experimental data have shown that the
strength envelop for soil is nonlinear. Nevertheless, the linear Mohr—Coulomb strength parameters are widely
applied in engineering practice and therefore also used for the following analyses.

Unfortunately, the linear regression with the extended shear diagram (p’-q - diagram) gives negative values
of ¢'. This physically implausible negative ¢' may result from minor deficiencies during the test procedure and
may benefit from a more sophisticated analysis and differentiation. Nevertheless, in the following, information
on the variability of ¢’ and ¢’ are derived from the statistical analysis of theindividual test series. For this
purpose, each test series consisting of three tests each is evaluated. Then, the resulting ¢’ and ¢’ are statistically
described. In total, 61 test series are evaluated. The water content of the specimens at the start of the tests ranged
between 18 % and 50 %; the porosity between 33 % and 50 %.
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Figure 4. Boxplots of effective friction angle ¢’ (left) and effective cohesion ¢’ (right). In the box 50% of the data are
found. The notch shows the median; the whiskers correspond to 1.5 x interquartile range. The circles represent outliers.

Table 4. Summary of point statistics for effective shear strength parameters ¢’ and ¢’.

Group A (Weichselian / Group B

Complete data set Saglian sediments) (Elsterianpsediments)

3 ¢ ¢ 3 3 c

in ° in kKN/m? in ° in kN/m? in ° in kKN/m?
count 61 61 48 48 13 13
mean 30.63 20.06 32.78 21.77 22.68 13.71
standard deviation (std) 7.78 18.21 6.64 18.82 6.37 14.01
coefficient of variance (COV) 0.25 0.91 0.20 0.86 0.28 1.02

Again, different material properties are observed within the two groups and the complete data set, but the
differentiation into clusters does not reduce the group-inherent variability significantly (see Figure 4 and
Table 4). However, it can be assumed that if not differentiated between the stratigraphic layers, the shear
strength of Group B (Elsterian sediments) is overestimated; whereas the shear strength of Group A is
underestimated (Weichselian /Saaliansediments). To reduce the variability, it may be beneficial to differentiate
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the clusters further, especially in Group A, e. g., as indicated in Figure 2, which, however, is not fully supported
by the present data.

4 Conclusions and outlook

This paper presents a data-driven methodology for a differentiation of soil types that serves the multivariate
character of soil data. With the machine learning algorithm k-means clustering two soil clusters with different
material properties are identified.Statistics of shear strength and compressibility are determined for each soil
type.

The statistical analyses show that a differentiation into soil types reduces the variability within a cluster and,
thus, allows for a more precise description of the material. It can be shown that the statistics are affected by the
dominant soil type.In the case of oedometer tests, it might be feasibleto use specimens larger in diameter and
height to improve the results. In the case of the presented triaxial tests, realistic shear strength properties are only
derived if the individual test results are consulted and ambiguous testsare neglected. It is therefore emphasized
that clustering as one of many data-driven methods cannot overcome limitations of existing data analysesand
uncertainties during testing. It cannot replace engineering judgement.However, it cancertainlyassistthe engineer
in describing the soil more precisely, e.g., in order to define characteristic values.

Further investigations should validate the clusters that have been identified. This can be done, e. g., by
including additional data or applying more advanced clustering algorithms. In addition, it may be beneficial to
differentiate the clusters even further, which, however, is not fully supported by the present data. Based on
supplementary studies, the determined mean and variability of the investigated soil types may be reviewed.On a
broader basis, it is recommended to support generic databases which store soil data in a structured, machine
readable manner. Only in this way, geotechnical engineering will benefit from recent and future developments in
the field of data science.
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