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Abstract:Rainfall and water level change are two main factors causing failure of reservoir slopes. Thus soil-fluid mechanics
is applied with the fluctuation of groundwater table. However, many geotechnical parameters needed for the analysis are
highly varied. Spatial random fields-based Bayesian method is proposed, which can systematically assimilate prior
knowledge, borehole test data and long-term monitoring data to obtain posterior distributions. There are three major
components of the method. They include unsaturated soil-fluid coupling mechanics, spatial multivariate discretization, and
subset Monte-Carlo simulation of reliability analysis. The approach is applied to the Shiliushubao slope of the Three Gorges
Reservoir area, which is located 9.0km downstream of the Badong County in Hubei Province, China. Results prove that the
updated key geotechnical parameters will quantitatively predict the geohazard of landslide, especially for unsaturated soil
slope that suffers an unprecedented heavy rainfall subject to low reservoir water level in the summer. According to the
conditions of heavy rainfall and rapid rise and fall of the Yangtze River water level in 2020, the reliability analysis of the old
Shiliushubao landslide is carried out in the Three Gorges Reservoir area.The results for the two different conditions both
indicate that the safety factor of the slope stability is low, but the reliability index meets the minimum requirement of 2.70
according to the specification. None of the additional reinforcement measures are required.

Keywords:Geotechnical parameters- spatial random fields- Bayesian method- Unsaturated soil slope- Reliability analysis
1 Introduction

Heavy rainfall and water level fluctuation are two of the main factors contributing to reservoir landslides (De
Vita et al., 1998; Huang ef al., 2016). Many landslides were reactivated by the first impoundment of the Three
Gorges Reservoir, China (Jian et al., 2014). Early warning system of long-term monitoring data has been used to
prevent and mitigate geohazards. However, it is difficult to make quantitative predictions on the re-activation of
reservoir landslides. Cai et al. (2017) analyzed the spatial variability of hydraulic conductivity and shear strength
of an infinite slope during groundwater recharge. Zheng et al. (2017) predicted the mechanical behaviors of an
embankment using laboratory data and field measurements. Lo and Leung (2019) studied the spatial variability
of subsurface soil for improving prediction of braced excavation response with a Bayesian method. However,
there was only one geotechnical parameter taken into account.

The early literature was concentrated on Spatial Random Field (SRF) of univariate. It is an innovative idea
that denotes the key geotechnical parameters as multivariate SRFs, e.g., effective cohesion, ./, effective internal
friction angle, ¢, Young’s modulus, ¢ and saturated hydraulic conductivity, k¥, of an unsaturated slope.
Spatially correlated geotechnical parameters will be calibrated by assimilating prior knowledge, borehole testing
data, long-term monitoring data, and soil-fluid coupling mechanics within Bayesian framework. Furthermore,
reactivation of once failed reservoir slope will be predicted under an unprecedented heavy rainfall for the
upcoming summer.SRFs-based Bayesian method is organized as follows. Soil-fluid coupling mechanics of
unsaturated slope is presented as the first step, which is followed by SRFs, Bayesian method and reliability
analysis. This approach is applied to Shiliushubao slope in the Three Gorges Reservoir area, China. It was a
well-known failed soil slope in the year 1975. Potential geohazards of landslide reactivation are taken into
account with the calibrated key geotechnical parameters.

2 Soil-fluid coupling mechanics
Soil-fluid coupling mechanics of an unsaturated slope consist of three basic components, and these components

include transient seepage analysis under rainfall infiltration and reservoir water level fluctuation, effective shear
strength analysis, and stability analysis of potential landslide.
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2.1 Transient seepage analysis

Soil-Water Characteristic Curve (SWCC) and Hydraulic Conductivity Function (HCF) will make a substantial
contribution to solve transient flow function (Richards, 1931). Many analytical models have been developed to
describe the SWCC and HCF. For the purpose of the current study, Van Genuchten’s model (Van Genuchten,
1980) is shown in Eq.(1),
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where @, is the normalized volumetric water content, ¢, is the saturated volumetric water content, o, is the
residual volumetric water content, », is the pore air pressure, », is the pore water pressure, &, is the saturated
hydraulic conductivity, and unsaturated hydraulic conductivity ; is determined by the function of HCF. o, m
and n, are the constant coefficients of SWCC.

2.2 Shear strength of unsaturated soil
Effective stress o' of unsaturated soil is derived from three variables, total stress o, pore air pressure u,, and
suction stress o, (Lu ef al., 2010),the effective shear strength of unsaturated soil is obtained as depicted in Eq.(2),

7, ='+(o—u, )tang' +6, (u, —u, )tang’ 2)

where o, is expressed by a function of the matric suction u, —u,, 7, denotes the effective shear strength, ¢’ is the
effective cohesion, and ¢’ is the effective internal friction angle.

2.3 Stability analysis of unsaturated slope
Factor of Safety (FOS) of unsaturated slope stability is analyzed by Morgenstern-Price (M-P) limit equilibrium
method. Static balance equation of 7, is given out in Eq.(3),
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where 7 is the weight of the slice 7, Xin and X are the horizontal inter-slice forces, Y- and ¥ are the vertical
inter-slice forces, thrust force is £=Jx'+1°, @ is the slope angle of the slice 7, and / is the arc length of the slice ¢,

i=1,...n

3  SRFs-based Bayesian method

SRFs-based Bayesian method is employed to analyze uncertainty propagation of geotechnical parameters. In this
case, the outer loop will calibrate the key geotechnical parameters utilizing Bayesian theorem, which can
assimilate prior knowledge, borehole testing data and long-term monitoring data through soil-fluid coupling
mechanics. Furthermore, the inner loop will take out the stochastic analysis of slope stability under the
posterior distributions.

3.1Spatial random fields

Soil-fluid coupling analysis customarily involves multiple geotechnical parameters, such as the strength,
deformation and seepage properties, in which case the Random Variable (RV) ignores spatial variability, where
the Coefficient of Variation (COV), 6 =v/u, synthesizes the randomness, # denotes the mean value, and v is the
Standard Deviation (SD).

SRFs can take randomness into account and emphasize spatial variability. In addition to the mean values # and
SD values v, SRFs use the correlation function(Matheron and Armstrong, 1963) to depict the spatial variability
as shown in Eq. (4) ,
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where 2.(Wis the autocorrelation function, i=1,...m , m is the number of the key geotechnical parameters,cross-
correlation function 2,(" (i,j =1....m,i# j) depicts mutually spatial variation of SRFs. It may assume, #.,(")=p,,(h).

Exponential model is adaptive for long-range correlated SRFs, while Gaussian model can depict the
reversed curves of a correlation function. As suggested by Vanmarcke (1977), Spherical model has the
advantages of conciseness and robustness. Hence Eq.(5) is used into application,

— _ 3
()= 1-[1.5(h/a,)-0.5(h/a)’] 0<h<aq, .
0, h>a,

where () is the correlation coefficient between lag distance #, and « is the primary correlation range.
Three-dimensional heterogeneity is measured by the weighted lag distance #» (Wang, et al., 2017) as shown
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where 7 is kept in constant, 1.0 for the primary correlation range «(e.g., parallel with the slope surface), n, is the

range ratio of the second correlation range o (i.e., perpendicular to the primary range in the vertical plane)

divided by «, 7 is the range ratio of the third correlation range « (i.e., perpendicular to the « and «) divided by

a,.

3.2Bayesian framework
A Bayesian framework is designed to assimilate prior knowledger@), borehole testing data z, and long-term
monitoring data 3, for inferring SRFs, v . Accordingly, the Posterior distribution, rivlz.z) is derived from

Eq.(7),

Py |2,,2,) = oG |¥:2)PY)
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where, likelihood function, L(z, 1¥:z,) is a probabilistic distribution of long-term monitoring data =, which is also
subject to borehole testing data ., prior distribution r@), and soil-fluid coupling model M(.z,). It is worth noting
that posterior distribution r(v|z..z) will take testing uncertainties,  and # into a further discussion.The analysis
consists of three components: prior distribution, likelihood function, and posterior distribution.

3.2.1 Prior distribution

Before taking any on-site observations (e.g., % and %) into the Bayesian framework, prior distribution »®)
summarizes the knowledge that is available for SRFs (Wang et al., 2013; Phoon et al., 2016). Accordingly, the
multivariate logarithmic normal distributionis generalized to depict number 7 geotechnical parameters at »
spatial points as shown in Eq.(8),

mxn
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where cis the covariance matrix of SRFs, C=R,®C, <, is the covariance matrix of number 7 normal Random
Variables (RVs),matrix # consists of autocorrelation and cross-correlation functions 2., (i,j =1...m) symbol ®’
denotes the operator of matrix multiplication. In a special scenario, lag distance #=0, which means that SRFs
degenerate into RVs. Pearson correlation between two logarithmic normal RVs is represented by 7., which

3.2.2 Likelihood function
SRFs-based Bayesian method can assimilate prior knowledge »@ , borehole testing data z, and long-term
monitoring data z to obtain the posterior distribution of the key geotechnical parameters, v =[¢’¢.E.k], Likelihood
function calculation includes two key components, general driver of soil-fluid coupling model #%.z) and
multivariate discretization of SRFs.The following 5 key steps involve the conditional multivariate discretization.
(1) Defining a random path on the stochastic elements, each midpoint of an element is traversed once in a
realization, the element edge size is less than the smallest correlation range, which guarantees to depict the
spatial variation. Conditional data consist of the borehole testing data, z (i.e., errors ¢, are randomly added to the
observations), and the existing discretization y()..(x.),
(2) Predicting the mean values #(x) and ), and the SD values %(x) and ».(x), at the midpoint, . The
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recognized quantities include prior mean values, # ands, SD values v and »», autocorrelation function a,), g,
and cross-correlation function s.(). Conditional data consist of the original borehole testing data z,, and the
discretized samplesy(x)--y(x.).

(3) Building two normal distributions with N (x)v/(x)land Mu();(5)] for the midpoint =, and taking one
sample, respectively. The outcomes,:(x) andv.(x) will be served as the new conditional data of the next midpoint
XA+I .

(4) Moving to the next midpoint %.. and then repeating steps 2 and 3 until sampling for all the stochastic
elements.

(5) Finishing one multivariate discretization of SRFs, then backward transforming v with the exponential
operator. Stochastic analysis of soil-fluid coupling model M.z,) will provide the theoretical results of long-term
monitoring data z on a reservoir slope. Accordingly, the likelihood function LG |w.z,) can be constructed for
& =z,-M(y.z,)  which is expressed by a multivariate normal distribution as shown in Eq.(9),

expl- 3 &, = My, C, (5~ Mw.,)]

L(z, lw,z,) =
J(ZH)k |C, |

where, €, is the covariance matrix of the monitoring error ¢, I is the determinant of ¢ .Furthermore, the

correlation coefficient @ (#/=1.--4) among ¢ is simplified into the function of mutual distance(Bhattacharjee,

2014) as shown in Eq.(10),
D(x;,x;)

i =

)

(10)
max D
where D(x.%) is the Cartesian distance between two monitoring points % and %, mxD is the maximum distance of
all the monitoring points.

3.2.3 Posterior distribution

Stochastic analysis of soil-fluid coupling mechanics M(.z.) will consume a lot of computational resources. In the

current analysis, Markov Chain Monte-Carlo (MCMC) simulation is used to fast obtain numerical solution.

Preparing the logarithmic normal prior distribution, r(w=I[¢.¢’.Ek] for SRFs, which includes the mean value

vector #, covariance matrix ¢ . Taking out the i multivariate discretization of »@ subject to the prior

distribution p(¥) and the originally conditional data z.. Predicting the long-term measurements z using the
L(z, | v:’,zu)P(wg 0.

Lz, [y z)py'")

Taking a random sample # between 0 and 1, and comparing it with » . If »>« accepting the spatial
discretization ' to be the posterior sample. Updating regularly the prior mean value vector #, covariance
matrix ¢ from the accepted posteriorsamples for acceleration purposes, Reaching to the maximum samples, i<V,
and calculating the posterior distribution of r(vlz..2,).

stochastic analysis of soil-fluid coupling model, M¥'.z,), and calculating the threshold, 7 =min(

4 Case studies

Shiliushubao slope has been stabilized since the original failure in the year 1975 as shown in Figure 1, which is
currently reactivated after the impoundment of the Three Gorges Reservoir in Hubei Province, China.
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Figure 1. potential landslide section of the Shiliushubao slope

Geotechnical investigation indicates that the volume of the potential landslide body reaches 11.8x106m?,
and the slip area is 0.25km?. The average longitudinal length and thickness reach 550m and 47m, respectively.
Width is between 350m and 470m.Elevation varies between 60m and 350m, and the slope angles are 25°-
45°.The report shows that the first water impoundment of the Three Gorges Reservoir was started from the initial
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water level of 68m on May 25, 2003. Water level was reached its designed maximum of 175m in the year 2010.
Since then, the water level of the reservoir has been periodically fluctuating between 145 and 175 m.

4.1 Engineering information

Posterior distributions of the key geotechnical parameters are applied to the reliability analysis of slope stability,
which will take a landslide hazard prediction during an unprecedented heavy rainfall in the upcoming summer.
Geotechnical investigation of the landslide deposit (i.e., colluvial soil) provides the basic information of the key
geotechnical parameters, such as the effective cohesion ¢, effective internal friction angle ¢, Young’s modulus
£, and the saturated hydraulic conductivity 4 .The simulation parameters of the landslide sediment are set as
follows, 7=22 ,v=03,¢'=39.8, ¢' =354, E=99.9, k, =2.41 The simulation parameters of bedrock are set as
follows, 7=25,v=022, ¢"=1000, ¢' =45, E=23170, k =025, ZK, ~ ZK, provide the borehole testing data, such as
the effective cohesion ¢, its mean value equals to 39.8kPa, mean value of the effective internal friction angle
equals to 35.4°. Exploratory adit#> only provides the data of Young's modulus #, and the mean value equals to
99.9MPa. Hydrogeological boreholes consist of g ~ck, , where the mean value of saturated hydraulic
conductivity 4 , is 2.408m/d. There are three long-term monitoring points, &, » and & installed on the slope
surface as listed in Table 1, which are used to collect slope settlements along with the periodic fluctuation of the
reservoir water level and the amounts of annual rainfall, as shown in Figure 2. Monitoring errorsé are denoted
into 9 =0.1~0.3. Correlation coefficient, » among 2, % and z is determined by the Cartesian distance,

/=123 Hydrogeological properties are depicted by the SWCC that shows the curve between matric suction
u, —u, and volumetric water content 6 in Figure 3

Table 1.Long-term monitoring data of the reservoir slope surface

Point Coordinates Long-term monitoring data
oin
Xi(m) X3(m) Three-months settlement (mm) J,
b, 301.8 217.8 130 107 128 111 0.1~0.3
b, 342.5 200.1 108 103 109 99 0.1~0.3
by 388.7 196.2 67 66 66 72 0.1~0.3
180 — T 140 107 10” 10" 10° 10' 10° 10°
—— Annual water level change 10" T T T T T 10*
175 = Annual rainfall in 2012 120 10° 10°
10 10
170 100 2 i
,g fg £ 10 10
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s 20 210" F 10
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Figure 2. Hydraulic boundary conditionsfor theunsaturated Figure 3. Hydraulic Conductivity Function (HCF) between
transient seepage matric suction and water content.

4.1.1 Prior knowledge

Borehole testing data of Table 1 cannot provide comprehensive statistics for the SRFs, v=[.¢0.Ek], but a scope
denotes the magnitudes of the key geotechnical parameters. Thus, prior distribution of ¥ is proposed to be a
multivariate of Logarithmic Normal (LN) distribution with large uncertainty. In this condition, the Marginal
distribution, ¢’ is subject to LV(50.50')kPa, ¢ is subject to LN(40.40°)°) £ is subject to LV(120120°)MPa, and & is subject
to (404¢)m/d. Correlation coefficient, 7.ij=L-4i#j is assumed to be 0.0 at the beginning of the joint prior
distribution. According to the landslide formation mechanism (Jian ez al., 2014), the first correlation range of the
geotechnical parameters ¥ is proposed to be parallel with the slope surface (i.e., the angle of dip equals to 27.5°).
The second correlation range is perpendicular to the first one, and @ and« are assumed to be 20m each. The
initially third range ratio is postulated to be, 7= = =7,,=02,

4.1.2Posteriors of the key geotechnical parameters

The joint prior distribution »@) took a total of 1,000 Markov chain spatial discretization, which consumed 22
hours of stochastic analysis on a workstation of CPU Intel i9 @ 10 cores.The posterior statistical results for the
geotechnical parameters are shown in Table 2.
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Table 2.Logarithmic normalposterior distributions of the SRFs

. Correlation ranges Correlation coefficient 7
Geotechnical Mean SD ,
C ' E k

parameter value value a, = a,(m) 7, @' () s
(kPa) (MPa) (m/d)
¢ (kPa) 35.075 4.275 20.0 0.230 1.0 -0.040 -0.055 -0.049
@' (©) 30.075 2.617 20.0 0.296 -0.040 1.0 0.047 0.199
E (MPa) 94.800 13.044 20.0 0.313 -0.055 0.047 1.0 0.100

k, (m/d) 2.042 0.292 20.0 0.267 -0.049 0.199 0.100 1.0

4.2Reliability analysis of slope stability

Heavy rainfall outlines a major threat to the Three Gorges Reservoir area in the month of July each year. The
above calibrated geotechnical parameters are used to analyze the reliability index of the slope stability. SRFs
have two outstanding advantages than RVs. The former can provide more precise sliding trajectory and accurate
reliability index than the latter. For instance, the slope stability is analyzed in the case of an average reservoir
water level of 152m and a heavy rainfall of 100mmy/d for five consecutive days in the upcoming summer, which
becomes risky for the safety of life and property of the local residents. Figure 4 shows a pseudo scenario in
which if particularly 100kPa of strength is added to effective cohesion ¢’ at boreholes 2K, and 2., the critical
slip surface #1 (ie., slip radius=948.42m) will be replaced by the second slip surface #2 (i.e., slip
radius=468.13m) using SRFs. Therefore, the slip surface #1 controls the slope stability. In the following sub-
sections, the factor of safety, FOS, and the reliability index are discussed using assumptions of RVs and SRFs,
respectively.
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Figure 4. Variation of the critical slip surface under effective cohesion ¢’ (kPa) according to SRFs assumption

4.2.1 Reliability results of SRF assumption

(1) Reliability results in the common years

Reliability analysis employed by SRFs takes the spatial variability of the key geotechnical parameters into
account, and thus this approach guarantees the finding of a more precise and coherent reliability index of the
FOS.

SRFs use SMC algorithm to calculate the reliability index #, two subset parameters are needed, subset
number N and p,. The analysis is free in the choice of failure ratio p,, and the subset number N . However, N
should be selected large enough to give an accurate estimate of p,. Let N change from 100 to 1500, and
let pyequals 0.05, 0.10 and 0.15, respectively. Accordingly, there are two zones of reliability index # as shown in
Figure 5, the left one is the unstable combination until N =1000, whereas the right one remains stable combination.
In this case, for the purpose of balancing the precision and the efficiency, N =1000 is chosen as the optimal
parameter. S achieves the maximum subject to pr, =0.10 . Reliability index of FOS is Swr =2-470 | and the
corresponding failure probability 7 equals to 0.7%. SMC algorithm only takes 3,000 stochastic simulations,
which consume 1/3 times more when contrasted with the classical MC algorithm.
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Figure 5.Reliability index of the slope stability per SMC algorithm

(2) Reliability results in the specific year of 2020

In August 2020, the 5" flood wave of the Yangtze River passed through the Three Gorges reservoir area
accompanied by heavy rainfall in China. The reservoir water level varies with 15 m during 6 days. The complex
working condition will lead to the resurgence of old landslides. The predicted results will be highly biased using
only the safety factor as the evaluation indicator. An unsaturated slope reliability analysis method is based on the
strong hydraulic disturbance in the Three Gorges reservoir area, which considers the randomness of Soil-Water
Characteristic Curve (SWCC) and the spatial variability of saturated hydraulic conductivity. At first, Parameters
and uncertainties of SWCC model VGM, VGB, VG and FX are calibrated by a Bayesian approach, and then
spatial random field of the saturated hydraulic conductivity are discretized in the sliding body. Finally, the
reliability analysis will calculate the failure probability of the reservoir bank slope only considering the random
characteristics of the SWCC models, and the reliability index resulting of the spatial variability of the
unsaturated hydraulic conductivity.Figure 6 shows the reliability index of slope stability corresponding to the
SWCC models, the FX model corresponds to the smallest reliability indicator, /=2.741, and the VGB model
corresponds to the largest reliability indicator, #=3.641. The results show that using the unsaturated hydraulic
conductivity as a random variable, the calculated reliable index cannot meet the requirements in the specification
(#<2.70). The method is applied to Shiliushubao slope of the Three Gorges Reservoir area. The safety factor of
slope stability is lowunder rapid water level fluctuations and heavy rainfall, but the reliability index meets the
requirement of the code. None of the additional reinforcement measures are required.

4.5 . : : : , .
/] Reliability index
_______________________ ‘ [ — e ———
4.0 i
| K () considered as SWCC model
3 random variable 3,641 synthesized
L3s5r B=2.349 S=12.860 B=27~427 |
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iy 3158
% 30 / 2.934 E
2 L _ T Y 2741
x F . - v _ % 3
25+ / % 4
2.0 . . ,
VGM VGB VG FX
SWCC model

Figure 6.Reliability indicators of different SWCC models
5 Conclusions

Spatial random fields-Bayesian method is innovatively designed for the reliability analysis of unsaturated soil
slope. The following conclusions are drawn.

Four key geotechnical parameters ¢ .E and . are calibrated quarterly by integrating the prior knowledge,
borehole testing data, and long-term monitoring data of the year 2012. All the posterior mean values are less than
the priors, which indicates that using the borehole testing data directly will be a risky.
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Factor of safety, FOS, of the once failed slope is concentrated within the range of 1.1~1.5. During an
unprecedented heavy rainfall for the upcoming summer, the deterministic FOS is £ =1.055, which is subject to the
posterior mean values ¢=3507skea | ¢'=30075 and =2042m/d, The impacts of the geotechnical parameters, in the order of
from the largest to the smallest, are ¢ (i.e., 72%), ¢’ (i.e., 18%), and *. (i.e., 10%).

Assumption of random variables will underestimate the reliability index # of the reservoir slope. The result
P =0622 indicates that rescue treatments are necessary for slope reinforcement. Reliability index Aw will
increase to 2.470 adopting the assumption of spatial random fields, which is a more practical result because it
takes the spatial variability of the key geotechnical parameters into account.

Spatial random fields-based Bayesian method can prove that it is unnecessary to adopt additional
strengthening treatments to prevent Shiliushubao landslide under an unprecedented heavy rainfall for the
upcoming summer. However, it is recommended that long-term monitoring system should be continued to
provide more reliable and sustainable measurements.
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