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Abstract: Machine learning (ML) models are extensively used in data-driven landslide susceptibility prediction (LSP).
Dataset used in LSP with ML containing positive (landslide) samples and negative (non-landslide) samples, while the spatial
biases of non-landslide samples for LSP are frequently ignored. The main objective of this study is to develop a pattern-based
approach that properly tackles the spatial biases of non-landslide samples combining two models, i.e. balanced iterative
reducing and clustering using hierarchies (BIRCH) and Random Forest (RF). In this study, BIRCH is employed to select four
types of non-landslide samples, representing four spatial patterns. In the meanwhile, another set of non-landslide samples is
randomly selected to serve as control. RF model is trained to calculate the susceptibility index using these five types of non-
landslide samples along with landslide samples derived from landslide inventory, producing five LSP scenarios. Results
indicate that the pattern-based approach offers an effective way to find the non-landslide samples and provide sufficient and
reliable spatial patterns, and therefore proves itself as a better solution to the LSP.
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1 Introduction

A landslide can be characterized as a movement of massive rock and soil denoting slope-forming materials move
downward and outward a slope (Zhang et al., 2017). It is obvious that landslides represent a major reason for
fatalities and enormous property damage in mountain areas. The 12 May 2008 Wenchuan earthquake triggered
approximately 60,000 landslides resulting in significant geological erosion, with more than 20,000 deaths caused
by earthquake-induced landslides. Landslide susceptibility is used to illustrate the likelihood of landslide
occurrences over space based on environmental predisposing factors (Pham et al., 2018). Reliable, effective and
robust landslide susceptibility prediction (LSP) is crucial for mitigating and reducing landslide hazards.
Therefore, LSP is considered of predictive importance for landslide-prone areas.

A great number of quantitative appraisal models that can be classified into five categories, namely,
inventory-based models, statistical models, machine learning (ML) models, heuristic models and deterministic
models are adopted in LSP (Huang et al., 2017). Among those models, the ML models have gradually gained in
popularity over recent decades, especially in large-scale mapping. The ML models fall into two primary
categories including supervised learning (SL) and unsupervised learning (UL). SL algorithms defined by its use
of labeled datasets including support vector machine, logistic regression, artificial neural network and random
forest, are widely developed in landslide-prone areas for LSP. UL uses ML algorithms to cluster unlabeled
datasets, which offers approaches to find inherent patterns or data clusters without given labels. This study
combines the characteristic of the SL and UL algorithms to introduce a pattern-based approach for LSP, which is
developed to address the issue of sampling non-landslide samples in LSP. We aim to: (i) find reasonable
solutions for sampling non-landside pixels utilizing UL models, (ii) propose a methodological approach that
combines SL models and UL models for LSP.

2 Study Area

The study area is located in Yingxiu Town, the epicenter of the Wenchuan earthquake, which is in the transition
zone between Sichuan Basin and Qinghai-Tibet Plateau. Province Road 303 (PR303) stretches along the Yuzixi
River that is bounded by terrains rugged with steep slopes above 40° in many places presenting significant river
incision with “V”-shaped valleys. Widespread co-seismic landslides and post-seismic landslides were triggered
on both sides of the PR303. On May 12, 2008, the Wenchuan earthquake induced widespread shallow landslides
in the study area, and consequently led to intensively distributed loose deposits. A total of 305 landslides were
investigated in detail through field work and satellite images (Figures 1-2). The majority of them are
concentrated on the hanging wall of the Yingxiu-Beichuan fault on account of the “hanging wall” effect (Xu et
al., 2011). We calculated the covering areas of these landslides delineated with ArcGIS platform, which have an
average covering area of 78,763 m? and the largest one is in the Dayingou Ravine, located at elevations between
2,300 m and 3,190 m. The geomorphology of the study area is mainly controlled by complex faults, folds and
structural fissures. The altitude of the mountains ranges from 1,000 m to 3,000 m showing high relief amplitude
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and the slope mainly ranges between 50° and 70°. The bedrock, for the most part, consists of magmatic rock and
metamorphic rock. Lithology mainly features diorite, medium fine-grained granite and alluvium. The hard rocks
account for the phenomenon that the topography of the study area is quite steep and prone to rockfalls, landslides
and debris flows.
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Figure 1. Location of the study area and elevation map with landslide inventory.
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3  Methods

We first prepared the landslide inventory through field investigation and remote sensing images. Six
conditioning factors for LSP were extracted and discretized using natural breaks method. Then the data was used
to power model construction. The UL algorithm, Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH), was introduced to sample the non-landslide pixels. Moreover, a set of randomly selected non-landslide
samples are used here to serve as control. Random Forest (RF) models feed on these samples were constructed
and the predictive accuracy is compared and discussed according to the ROC curves.

3.1 Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is a clustering algorithm, a highly
effective method which clusters datasets, particularly large datasets by first producing a brief summary of the
datasets that is called the clustering feature (CF) tree and can represent sufficient patterns (Charest & Plante,
2014). CF is defined as the triple:

CF = (N, LS, SS) (1

where N denotes the number of data points, LS is the liner sum and SS is the square sum of the data points. Then
the summary statistic, i.e. CF tree, is then clustered instead of clustering the original dataset. For a given dataset,
the BIRCH can make clustering decisions without considering all data points and existing clusters. It
incrementally and dynamically clusters multi-dimensional metric data points in an attempt to derive the high
quality clustering. And clusters number K is not necessarily for BIRCH as it can be determined according to CF.

3.2 Random Forest (RF)

Random forest (RF), a well-known ML model utilizes the methodology of classification and regression tree
(CART) algorithm, which takes advantage of the bootstrap aggregating algorithm which randomly extracts
samples from original datasets to produce new discrepant training datasets with pattern spaces constructed by the
algorithm. Independent training samples are used to establish decision trees that are assembled to form a RF
model (Wang et al., 2021). Metrics including Gini impurity, information gain, and mean square error (MSE), can
be used to assess the performance of the split and the final results of the RF should be determined based on the
voting or averaging of these CART. Moreover, the remaining dataset called out of bag (OOB) can be used to
improve the performance of the RF model to avoid overfitting.
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4  Materials

4.1 Dataset preparation

According to previous researches and the characteristics of the study area, we selected six landslide-related
conditioning factors, including elevation, slope angle, aspect, lithology, topographic wetness index (TWI),
normalized difference vegetation index (NDVI). The data sources used to extract landslide-related environmental
factors mainly include the following: (1) Digital Elevation Model (DEM); (2) Landsat TM 8 Remote sensing
images and (3) Lithology distribution map. The ALOS-PALSAR DEM with a spatial resolution of 12.5%x12.5 m
was used to extract topographic factors including slope, aspect and topographic wetness index (TWI). Landsat
TM 8 satellite images with 30x30 m spatial resolution were used to extract normalized difference vegetation
index (NDVI). The lithology maps at a scale of 1:100,000 were collected from the local Land and Resources
Bureau. All the landslide-related conditioning factors were converted into raster format with a spatial resolution
of 12.5x12.5 m.

Figure 2. Damage of the earthquake to thestud}_/ area: (a) overa view; (b) and (c) amag dr d; (d) shallow landslide.

4.2 landslide-related conditioning factors

The elevation is usually linked to anthropic engineering activities, and linked to vegetation characteristics. The
elevation map is the primary data source of topographic factors and is the most significant factor concerning
landslide occurrences. It was classified into eight categories using natural breaks method, i.e., (783-1,145,
1,145-1,479, 1,479-1,793, 1,793-2,103, 2,103-2,423, 2,423-2,777, 2,777-3,174 and 3,174-3,832 m). Slope
influences the stability of a slope regime as the gravitational forces increase with an increasing slope angle, and
therefore making it prone to landslide. Owing to the mountainous characteristic of the study area, it was
significant for determining the landslide-prone areas. The slope map of the study area was categorized into eight
subclasses (0-15, 15-25, 25-32, 32-39, 39-44, 44-51, 51-60 and 60-88°). It is well acknowledged that earth
surface characterized by a lower elevation and a smoother slope, appears to have lower landslide frequency
compared with high elevation areas with steep slopes (Hong et al., 2020).

The aspect, to a certain extent, controls the response of the slope regime to climate conditions such as
precipitation and wind direction. The aspect is defined as the azimuth angle of projection of slope normal on
horizontal plane, and was classified into nine categories including flat, north, northeast, east, southeast, south,
southwest, west and northwest. The lithology is one of the most important factors showing a direct effect on the
occurrences of landslides as the lithological largely controls the physical and mechanical properties of bedrock
and deposits. The strata in the study area can be classified into 6 groups, i.e., schist, phyllite, alluvium, granite,
limestone and diorite.

The topographic wetness index (TWI) can quantitatively represent the topography and condition of soil
moisture in a watershed, which directly influences the slope stability. The TWI was classified into eight classes
(0-3.4, 3443, 43-5.1, 5.1-6.1, 6.1-7.3, 7.3-8.8, 8.8-10.8 and 10.8-18.9). The normalized difference
vegetation index (NDVI) is a widely used factor to quantitatively calculate the relationship vegetation on
landslides. The NDVI was divided into eight subclasses (-0.33-0.03, 0.03-0.14, 0.14-0.25, 0.25-0.37, 0.37-
0.51, 0.51-0.64, 0.64-0.76 and 0.76-0.91).
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5 Results

5.1 LSP using the single RF model

We first used randomly selected non-landslide samples to perform LSP. A total of 1,265,416 grid cells with six
landslide-related conditioning factors forms a 1,265,416*%6 matrix used as the dataset for modeling. 146,386
recorded landslide grid cells and the same number of randomly selected non-landslide samples were divided into
7:3 ratios as two parts (i.e., training set and testing set). Moreover, the labels of recorded landslide grid cells
were set to 1 and the labels of non-landslide samples were set to 0.

For the implementation of the RF model, the number of trees in RF and the number of variables considered
for each tree are the most important parameters. In this study, the number of trees was set to 100 and the
variables considered for each tree was set to 3 through grid research, and other parameters were left at the default
setting. The landslide susceptibility map using the trained RF model is shown in Figure 3. The susceptibility was
divided into five levels: very high (22.98%), high (21.81%), moderate (22.59%), low (20.65%) and very low
(11.97%). The landslide susceptibility index predicted by the single RF model, on the whole, can be
approximately regarded as the uniform distribution. It can be seen from Figure 3 that the very high and high
susceptibility zones are chiefly distributed along the valley slopes well in line with the landslide inventory.
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Figure 3. LSP using single RF model.

5.2 LSP using BIRCH-RF model.

The UL model, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) model was used to
process unclassified datasets into classes represented by their susceptibility patterns, from which the non-
landslide samples were selected. The 1,265,416*6 matrix was used as the input dataset while the labels were no
longer needed. All grid cells were categorized into five groups that represent five susceptibility classes. The
theory of BIRCH is introduced in Section 3. Clusters number K was set to five due to the five susceptibility
classes considered. Without prior knowledge of landslide inventory, a landslide susceptibility map can be
automatically produced utilizing BIRCH as shown in Figure 4. It can be seen that the spatial patterns of the
landslide susceptibility are well distinguished, therefore, effective clustering is achieved through BIRCH model.
Moreover, the very high and high susceptibility areas are well recognized that the majority of the recorded
landslide pixels fall into the very high and high susceptible areas while only few recorded landslide samples fall
into the very low and low areas.

Table 1. Four sampling selections of non-landslide grid cells.

Sampling selection Description of selections®

Selection A Sampling from the very low, low, moderate and high susceptible regions.
Selection B Sampling from the very low, low and moderate susceptible regions.
Selection C Sampling from the very low and low susceptible regions.

Selection D Sampling from the very low susceptible regions.

2The A, B, C and D sampling selections are different methods to sample non-landslide grid cells using landslide
susceptibility maps generated by BIRCH model.
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Figure 4. LSP using BIRCH model.

The next step was to select non-landslide samples from the landslide susceptibility map generated by the
BIRCH model. As shown in Table 1, four selections of sampling non-landslide pixels were proposed. Selected
non-landslide samples as well as recorded landslide samples were used to establish RF model. The landslide
susceptibility maps using four different non-landslide selections are shown in Figure 5. To illustrate this, the four
selections of non-landslide samples are displayed in Figure 5, which show intuitively the process of the sampling.
Pixels labeled with digit 1 denote selected non-landslide samples while others labeled with digit 0 are not
selected. As we can see, from selection A to D, the sampling points gradually gather suggesting decreasing
patterns for non-landslide samples. Selected non-landslide samples together with recorded landslide samples are
used to establish RF model and the landslide susceptibility maps using four different non-landslide selections are
shown in Figure 6. Through the comparison of Figure 5 and Figure 6, it can be seen that the landslide
susceptibility maps are well in line with the map of non-landside selections.
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Figure 5. LSP using BIRCH model.

5.3 Analysis of the pattern-based approach

The performance of the BIRCH-RF model was evaluated with the ROC curve and the area under curve (AUC)
(Figure 7). It can be observed that the BIRCH model considering the non-landslide selections exhibit better
performance than the single RF model where the non-landslide samples were randomly selected. Therefore,
applying UL models to perform sampling of non-landslide pixels is effective to improve predictive accuracy.
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Figure 6. LSP using BIRCH-RF model.

As we can see from Figures 6&7, though expanding regions of very high and high susceptible zones can
improve the predictive capacity, it may overestimate the susceptibility. This study used a sensitivity index,
accuracy improvement ratio (AIR), to quantify the overestimation of different sampling selections. The AIR is
defined as:

_ AAUC
AP

Where AAUC is the difference of AUC value between the BIRCH-RF models with different selections and
single RF model (Figure 7). And the solution of AP is similar, which means the difference of the percentages of
susceptibility above 0.5 between the models. The AIR evaluate the cost of susceptibility overestimation when
use the pattern-based approach (Table 2).

AIR (2)

Table 2. Accuracy improvement ratio (AIR) of the BIRCH-RF models.

Model Non-landslide sampling AP (%) AAUC AIR
BIRCH-RF Selection A 1.6 0.0374 2.33
Selection B 7.5 0.0778 1.04
Selection C 16.3 0.0895 0.55
Selection D 41.2 0.0933 0.23
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Figure 7. AUC accuracy of the BIRCH-RF model.
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The selection A of the BIRCH-RF model exhibited the highest AIR value of 2.33 far outweighing other
selections, indicating that the BIRCH-RF model with selection A does improve the predictive accuracy but
barely overestimate the susceptibility. It can be concluded that the non-landslide patterns of the UL models were
improperly used when utilizing the selections B, C and D, and selection A of the BIRCH-RF model with the AIR
value of 2.33 is the best selection among others.

6 Conclusions

This study proposed a pattern-based approach to construct a UL-SL model in which non-landslide samples can
be reasonably selected. The working mechanism of the pattern-based model is to find the inherent non-landslide
spatial patterns in datasets using UL algorithm, and to extract the patterns by sampling non-landslide pixels,
which brings performance advantages for LSP. The BIRCH-RF model was used to perform the LSP, while the
RF model served as control. Four sampling selections of non-landslide pixels were compared in detail. The
comparative research indicated that the proposed approach possesses superior predictive capacity to the single
RF model, offering an effective way to find the non-landslide patterns. Nonetheless, the pattern-based models
can lead to the overestimation of susceptibility once the improper use of the extracted non-landslide samples is
involved. We therefore proposed the sensitivity parameter AIR to introduce an explanation for the performance
of the approach. The AIR was defined to evaluate the overestimation of the models utilizing those four sampling
selections. The result shows that the selection A of the BIRCH-RF model with the AIR value of 2.33 is regarded
as the best solution, whereas the non-landslide patterns are improperly used when taking other selections, which
have higher cost of the overestimation.
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