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Abstract:With the rapid development of deep learning algorithms and easier access to remote sensing images, deep learning-
based landslide identification using remote sensing images becomes possible. Pan-sharpening techniques are often adopted
tofuse low-resolution multispectral images and high-resolution panchromatic images. This paper combines the deep learning
and pan-sharpening techniques to enhance landslide identification results and compares the performance of four pan-
sharpening techniquesand two deep learning models. Eventually, morphological image processing is adopted to segment
landslide clusters into individual landslides and form a basic landslide inventory.A case study of East Sai Kung, Hong Kong,
shows that pan-sharpening techniques improve landslide identification accuracy and U-Net model with Brovey sharpening
perform the best in this study.
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1 Introduction

Preparation of landslide inventories is a primary task in quantitative landslide risk assessment and mitigation
(Guzzetti et al. 2012; Fan et al. 2018; Xiao et al. 2022). Conventionally, landslide inventories are often produced
based on geological field surveys or visual interpretation of remote sensing images (Nichol and Wong 2005).
These methods are labor-intensive and time-consuming, especially when a large area is covered.A well-known
landslide inventory in Hong Kong is ENTLI (Enhanced Natural Terrain Landslide Inventory) (Dias et al. 2009),
which consists of more than 111,000 historical natural terrain landslides up to 2019.

Emerging deep learning techniques have been applied to facilitatelandslide identification with increasingly
accessible remote sensing images (Ghorbanzadeh et al. 2019; Lei et al. 2019; Wang et al., 2020; Zhang et al.
2020; Su et al. 2021). Although the efficiency and accuracy of landslide identification can be significantly
improved using deep learning, most of them adopts asemantic segmentation strategy with representatives such as
U-Net (Ronneberger et al. 2015), SegNet (Badrinarayanan et al. 2016) and DeepLab (Chen et al.
2018).Thesemantic segmentation strategy does separate landslides and non-landslides in the images (i.e.,
labeling landslides as 1 and non-landslides as 0), but cannot differentiate between different landslides (i.e.,
labeling different landslides as different numbers). The latter is particularly critical to characterize the feature of
each landslide to generate a landslide inventory.

On the other hand, remote sensing images usually include multispectral images and panchromatic images.
Compared with panchromatic images, multispectral images contain color information of ground objects but with
lower spatial resolution. Pan-sharpening techniques (Zhang and Mishra 2012) are widely adopted to fuse the
low-resolution multispectral image and the high-resolution panchromatic image at the same location to produce
an updated high-resolution multispectral image. It is expected that the accuracy of landslide identification can be
improved based on the pan-sharpened image.

This study aims to automatically generate a landslide inventory for Hong Kong using deep learning
techniques. Pan-sharpening is first applied to obtain high-resolution multispectral images, based on which deep
learning is then used for landslide identification. Morphological image processing is afterwards adopted to
segment different landslide instances and form a basic landslide inventory. A case study of East Sai Kung, Hong
Kong is investigated to demonstrate the capacity of the proposed framework.

2  Automatic landslide inventory generation

This study proposes an automatic landslide inventory generation framework consisting of three steps;namely
image enhancement using pan-sharpening, landslide identification using deep learning, and landslide
segmentation using morphological image processing. Once the boundary of each landslide is determined, several
geometry records of each landslide, such as the crown, trace, and area of landslide, like those included in ENTLI,
can be quantified to form a basic landslide inventory.
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2.1Image enhancement using pan-sharpening

The pan-sharpening step aims to fuse the low-resolution multispectral image and high-resolution panchromatic
image at the same location to produce an updated high-resolution multispectral image. Four pan-sharpening
techniques, i.e., Brovey, principal component (PC), color normalized (CN), and Gram-Schmidt (GS)spectral
sharpening algorithms, are adopted to compare their performances.

The Brovey method sharpens the images by multiplying each band of the multispectral image with a ratio of
the high-resolution data to the sum of the color bands. The color bands of multispectral image are resampled to
high-resolution pixel size using interpolation techniques.

The principal component method first transforms multispectral bands to principal components and an
inverse principal component transformation is then performed after replacing the first principal component by
high-resolution panchromatic image.

The color normalized method is an extension of Brovey algorithm, in which only the multispectral bands
falling within spectral range of panchromatic image are sharpened.

The Gram-Schmidt method first reproduces a low-resolution panchromatic band from the multispectral
bands, followed by a Gram-Schmidt transform on the reproduced low-resolution panchromatic band and
multispectral bands (panchromatic band is taken as the first band). By taking the high-resolution panchromatic
band as the first band of the Gram-Schmidt transformed bands, an inverse Gram-Schmidt transform is applied to
construct the pan-sharpened multispectral bands.

2.2Landslide identification using deep learning
Two candidate semantic segmentation models, namely U-Net and DeeplLab, are applied for landslide
identification. Their modified network structures are shown in Figure. 1. The U-Net is a 58-layer network
structure modified from a fully convolutional network. The structure maintains the encoding process of the fully
convolutional network to extract image features. It combines the low-level features obtained in the encoding
process with the upsampling results to achieve more accurate positioning and prediction in the decoding process.
A large number of feature channels are maintained during decoding (e.g., 512 channels are produced after first
upsampling process), which enables the model to transmit background information to improve its accuracy.
Figure. 1(b) shows a modified network structure from DeepLabV3+. The model adopts the strategy of
spatial pyramid pooling to ensure that multi-scale contextual information can be learned. An encoder-decoder
strategy similar to U-Net is adopted to capture sharper object boundaries. Different to U-Net, only the features of
one stage are fused in the decoding process. The results obtained from the encoding process are first upsampled
by the bilinear sampling method with a factor of 4, and then concatenated with the corresponding low-level
features. In this study, the network backbone of DeepLabV3+ is Res-Net18 with 100 layers.
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Figure 1. Architecture of modified (a) U-Net and (b) DeepLabV 3+ for landslide identification.

2.3Landslide segmentation using morphological image processing
The identification result of semantic segmentation is a binary image with 1 and 0 for landslide and background,
respectively. The identified landslide instances are mixed with the same number, making it difficult to analyze
the landslide attributes. This study introduces a morphological image processing-based landslide segmentation
step as a post-processing step of deep learning to separate the identified landslides, as follows:

(a) The binary image is first eroded to remove undesired cluster pixels with small areas, according to a flat
morphological structuring element (e.g., a square structuring element with width of 8 pixels).

(b) The image is then dilated with the same morphological structuring element to merge pixels separated
during the erosion operation.

(c) All connected components in the binary image are identified as independent landslides and the
boundaries are extracted as landslide polygons.

(d) Those connected components are further skeletonized to polylines to obtain landslide traces and the end
points with higher terrain elevation are identified as landslide crowns.
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(e) The area and runout distance of each landslide can be estimated, together with the crown (point), trace
(polyline) and impact area (polygon) of landslide, to form a basic landslide inventory, similar to the information
contained in ENTLI.

3 Case study of East Sai Kung

The East Sai Kung, Hong Kong (Figure. 2(a)) is taken as a case study. During the rainy season of 2014 and
2016, a large number of landslides occurred in this area, as observed from the WorldView-2 satellite images,
among which the resolutions of the multispectral image (Figure. 2(a)) and the panchromatic image (Figure. 2(b))
are 1.92 m and 0.48 m, respectively. As shown in Figure. 2(a), landslides in two red rectangular regionsare
selected for training and testing the deep learning-based landslide identification models.
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Figure 2.Satellite images of East Sai Kung: (a) multispectral image; (b) panchromatic image; andpan-sharpened images
using (c¢) Brovey, (d) principal component, (e) color normalized and (f) Gram-Schmidt methods.

Figure 2(c)-(f) provide the sharpened 0.48m-resolution multispectral images using four pan-sharpening
methods. The results of color normalized and Gram-Schmidt methods appear to be more satisfactory. The tone
of the fused image based on principal component method changes significantly, which is caused by the high
concentration of the first principal component information. The pan-sharpened images have higher resolution
than the multispectral image and more distinct features than the panchromatic image. The contrast difference
between landslides and non-landslides is more obvious, which facilitates landslide labeling in machine learning.
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Figure 3. Landslide identification results of test dataset usmg U-Net: (a) satellite image; (b) ground truth; and identified
landslides based on (c) multispectral image; (d) panchromatic image; and pan-sharpened images using (e) Brovey; (f)
principal component; (g) color normalized; (h) Gram-Schmidt methods.

3.1 Model training and validation
Based on the training images in the aforementioned multispectral image, panchromatic image and pan-sharpened
images, twelve landslide identification models are trained using U-Net and DeepLabV3+, respectively. Figure. 3
presents the identification results of the test zone using the U-Net model. Figure. 3(b) is the landslide ground
truth depicted according to satellite images and serves as a benchmark to evaluate the landslide identification
results. With the low-resolution multispectral image, a large number of landslides cannot be identified.
Regarding the high-resolution panchromatic image, nearly all landslides can be identified but the identified
boundaries are much larger than those of the ground truth. The identification results based on the sharpened
images are similar and closer to the real landslide boundaries, indicating that the pan-sharpening enhanced deep
learning can improve landslide identification work.

Figure. 4 compares a quantitative evaluation index, loU, for different combinations of pan-sharpening
methods and deep learning models, which is defined as:

IoU=TP/(TP+FP+FN) (1)

where TP is the number of true positive predictions (the prediction is landslide and consistent with the ground
truth); FP is the number of false negative predictions (the prediction is landslide but the ground truth is not); TN
is the number of true negative predictions (the prediction is not landslide and the ground truth is not either); and
FN is the number of false negative predictions.

As shown in Figure. 4, U-Net has a better performance than the DeepLabV3+ in this study. When using the
DeepLabV3+ model, the IoU values are only 0.477 and 0.531, respectively, if the multispectral image and the
panchromatic image are used. When the sharpened images are adopted for landslide identification, the
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identification accuracy can be significantly improved and the highest IoU can reach 0.624 with Gram-Schmidt
pan-sharpening. When the U-Net model is applied, the Brovey pan-sharpening is the best with IoU of 0.657. The
U-Net model with Brovey sharpening is finally taken as the best choice for analyzing landslide attributes.

Applying the morphological image processing techniques,the number and area of segmented landslides in
the testing regionare 199 and 23,042 m? respectively, slightly larger than the actual number (i.e., 110) and area
(i.e., 19,799 m?). This may be because that some landslides are identified as multiple small landslides due to
recovery of vegetation and the identified boundary is a little larger than the interpreted boundary. Figure. 5 gives
an example of one landslide in zone B as shown in Figure. 2(a). The identified landslide crown, trace and
boundary is consistent with the ground truth extracted from ENTLI
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Figure 4. IoU values for different combinations of pan-sharpening methods and deep learning models.
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Figure 6.Landslide inventory of East Sai Kung.

3.2 Landslide inventory of East Sai Kung
Takingthe U-Net model with Brovey sharpening,a landslide inventory in East Sai Kung is automatically
generated.As shown in Figure. 6, the identified landslides agree well with the ground truth in this area. Applying
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the morphological image processing technique for landslide segmentation, the identified landslides can be
separated to extract the landslide crowns and traces with attributes such as the length of trace and impact area. A
total of 999 landslides are identified with a total area of 121,309 m?. The total area is close to the true value (i.e.,
121,719 m?), while the number identified is larger than that in ENTLI (i.e., 589).Again, this is because some
landslides are identified as several small ones due to recovery of vegetation in the middle of some landslides.
The ENTLI has corrected this issue with engineering judgement. More efforts should be paid in the future to
automatically combine these small and nearly connected landslide areas into one complete landslide.

4 Conclusions

This study proposes an automatic landslide inventory generation method consisting of three steps, namely image
enhancement using pan-sharpening, landslide identification using deep learning, and landslide segmentation
using morphological image processing. A case study of East Sai Kung, Hong Kong is investigated to
demonstrate the capacity of the proposed framework.

The pan-sharpening techniques improve the accuracy of deep learning-based landslide identification. When
using the DeepLabV3+ model, the Gram-Schmidt sharpening method is the best with IoU of 0.624; when the U-
Net model is applied, the Brovey method is the best with IoU of 0.657. The U-Net model has a better model
performance than the DeepLabV3+ model in this study.Eventually, a landslide inventory with 999 landslides
covering 121,719 m? area is established for East Sai Kung.
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