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Abstract: Landslide Susceptibility Mapping (LSM) plays an important role in identifying, characterizing, and managing
landslide disasters. The uncertainty of LSM is known associated with several geo-variables, including geology, land use,
topography, vegetation cover, among others. However, the effect of the varying geometry of mapped landslide boundaries on
the accurate characterization of landslide events has not been fully investigated in the literature. In this study, we performed a
sensitivity test of a landslide susceptibility model, based on the varying complexity of mapping boundaries, including
triangular, circle, square, and irregular shapes of mapping polygons. We trained a Bayesian network model to evaluate the
posterior landslide probability for the Western Oregon area using model variables including slope, elevation, curvature, relief,
land use/cover, soil types, and precipitation, and the model data consists of landslides inventories, established according to
different complexity levels of mapping polygons. Results show that the circular and irregular polygons generated model
predictions with higher precision and accuracy compared to those associated with triangular and square polygon shapes. The
results of this analysis can serve as quantitative guidance for the faithful characterization of future landslide events and set the
basis for uncertainty quantification of other participating sources in landslide susceptibility analysis.
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1 Introduction

Landslides occur frequently throughout theUnited States that until 2020, several individual landslides inventories
among 10 states have shown a total of 310,392 landslides, in which 57,975 have occurred in Oregon state that is
represented as one of the most impacted areas in terms of both high frequency and severity of mapped landslides
(Burns and Madin 2009;Mirus et al. 2020).

To identify the landslide prone areas, scholars have developed methods to assess the spatial probability of
landslides occurrence that often recognized as Landslide Susceptibility Mapping (LSM)(Varnes 1984; Guzzetti
et al. 1999). Methods of LSM include geomorphological mapping (Van Westen et al. 2003), heuristic modeling
(Ruff and Czurda 2008), statistical correlating (Hong et al. 2017; Wang et al. 2016), machine learning techniques
(Ayalew and Yamagishi 2005; Marjanovi¢ et al. 2011), physically-based methods (Chen et al. 2015), among
others. One of the machine learning methods is the Bayesian Network (BN) that can represent the conditional
dependence samong participating variables through the probabilistic graphic modeling. The ability of BN in
representing uncertain knowledge and its capability in updating models in light of incoming evidence attracted
scholars for constructing LSM models (Song et al. 2012; Oommen et al. 2018; Wang et al. 2019; Lee et al. 2020;
Khalaj et al. 2020).

Similar to any modeling activities, however, there is a certain amount of uncertainty inherent in every LSM
model, which can lead to the varying degree of accuracy and precision of model performance (Feizizadeh, and
Blaschke 2014; Pourghasemi et al. 2020a). The type of uncertainty can be both aleatoric and epistemic, presented
as incompleteness of data populations, and limitations in the techniques for developing the susceptibility map
(Ardizzone et al., 2002). One source of uncertainty can be originated from different geometries of polygons used
for mapping the landslides. Specifically, Huang et al. (2022)have recently investigated the effectiveness of
landslide boundaries to measure the uncertainty of LSM by considering three forms of mapping geometrics
comprised of point, circle, and irregular shapes. Results show that landslide mapping by points can generate
corresponding results having a higher uncertainty and lower accuracy than those of polygon shapes.

In this study, we assess the uncertainty of posterior probabilities of landslide occurrence by using BN
method. The effects of varying geometry complexity of mapping boundaries on the model estimation have been
investigated. Results of this analysis can serve as quantitative guidance for the faithful characterization of future
landslide events and set the basis for uncertainty quantification of other participating sources in landslide
susceptibility analysis.

638



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR) 639

2 Study Area and Dataset

The west side of Oregon, close to the coastal region, is selected as the study area that situates between a
longitude 0f121°80'Wto 124°42'W and a latitude of 42°N to 46°24'N, encompassing an area of 48672 km? (Fig.
1). The Statewide Landslide Information Database for Oregon (SLIDO) is a geo referenced openly available
database from which we collected the data of landslide events. We first selected 2,781 landslides characterized
by slopes between 20° and 40°, landslide movement of slide or combined slide and rotation, and identified with
high confidence in terms of landslide occurrence. We then exclude parts of the datasets in which landslide
occurred close to the border that resulted incompleteness of the datasets. Finally,359 landslides we reselected for
the present study. The range of the area of the selected landslides is between 103 m? and 68888 m?, with a mean
value of 18408 m?. For the negative samples used for training the BN model, we randomly selected the same
amount of non-landslide points compared to landslide points as introduced above.

119°W

-46°N

44°N

-43°N
©  Landslide Locations _ I Trregular Polygon _ Landslide
© Non-Landslide Locations © 7 1 Irregular Polygon _ Non-Landslide
[ Oregon_State [ circle _ Non-Landslide
Circle _ Landslide l:] Square _ Non-Landslide
Square _ Landslide [ | Triangle _ Non-Landslide 184
Triangle _ Landslide 3 i 42°N

124°W 123°W 122°W 121°W 119°W 118°W

Figurel.Study area including landslide inventory map and mapped landslide and Non-Landslide boundaries: Landslide
centroid (yellow points), Non-landslide centroid (red points), mapped irregular polygon landslide (black dashed line), circle
landslide boundary (dark blue), square landslide boundary (dark orange), triangle landslide boundary (dark green),irregular

polygon Non-landslide (red dashed line), circle landslide boundary (light blue), square landslide boundary (light orange),
triangle landslide boundary (light green).

3 Methodology

The pre-processing of the datasets consists of drawing landslide boundaries, identifying, and categorizing
attributes that can impact the landslide occurrence. The mean value of all mapped landslide areas equals to
18408 m>which was used as the benchmark to determine the buffer size of both regular and irregular polygons.
For identifying the impact attributes, one should be noted that the landslide occurrence can be triggered by
various geo-environmental factors, such as topography, geomorphology, hydrology, geology, surface cover, as
well as external induced factors such as earthquake and rainfall (Guzzetti et al. 1999; Huang et al. 2021). In this
study, we have selected eight attributes where elevation, curvature, slope, roughness index, and relief amplitude
were extracted from Digital Elevation Model (DEM) with a spatial resolution of 10m, the land-use with a spatial
resolution of 10m, and soil texture map together with annual rainfall with a spatial resolution of 0.5°. All
continuous numerical attributes were converted to categorical classes, including elevation (30 classes) ranging
from 4.5ft to 1443 ftwith 48 ft interval scale, curvature (7 classes) ranging from -1.694 to 1.176 with 0.41 interval
scale, slope (7 classes) ranging from 0.24° to 35.24°with 0.41 interval scale, relief (8 classes) ranging from 2 to
402 with50 interval scale, roughness (6 classes) ranging from 0.23 to 0.83 with0.1 interval scale, and rainfall (3
classes) ranging from 106.326 to 271.326 mm with 55 interval scale. Soil texture and land-use possess original
categorical values.The presence/absence of landslide was used as target variables labeled by binary values 1 and
0, respectively. All available landslide datasets were randomly partitioned into 85% to 15% as training and test
data, respectively.

The BN model used by this study is a graphical model defined as a pair of{G, 8). The first component shows
the nodes exist in the directed acyclic graph (DAG), while the second component shows the conditional
interdependency and connection among the nodes. Bayesian network modeling consists of three steps: structure
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learning, parameter learning, and Inference. Structure learning is the first step which estimates the structure of
BN through methods such as score-based functions, constraint-based functions, or hybrid approaches (Beretta et
al. 2018).Among the proposed BN structures, Naive Bayes and Tree-Augmented Naive Bayes (TAN) are the two
most widely used ones due to their simplicity and computational efficiency(Langley et al. 1992; Friedman et al.
1997). Eq. (1) and (2) present the functional definition of Naive Bayes and Tree-Augmented Naive Bayes
(TAN), respectively. Compared to Naive Bayes method, TAN provides more flexibility that allows for inter-
connections between child nodes. Thus, we used TAN as the BN structure for this study. In Eq. (2), Pry(Y) is
the prior probability of class node (parent node of all attributes) in TAN; Pr 4y (Xp00: 1Y) is the conditional
probability of root node (class node is its only parent and all the edges outward from it) given class node in TAN;
Pran (x;1Y, Xpgarent)is the conditional probability of i-z attribute given its parent and class node in TAN.

Poy (X1, s X0, Y) = Pey (V) [1i2 Pen (x:1Y) €Yy

Pran(Xroots X2 s X0, Y) = Pray (V) Pray (Xrooe V) [T Pran (x:|Y, Xparent) (2)

4 Result and Discussion

4.1Posterior probability of landslide under different geometry shapes

In this study, we used Bayesian Dirichlet equivalent uniform (BDeu) score for structure learning, and Bayesian
estimation for parameter learning for constructing the BN model (Heckerman et al. 1995; Lee et al. 1968). After
the model was trained, the posterior conditional probability of landslide given each attribute was computed
separately using Eq.(2).The results of posterior probability of landslide versus participating attribute categories
are plotted on Figure 2. It shows the influence of geometry complexity of mapping boundaries as well as
different classes of attributes on landslide occurrence. Elevation, curvature, land-use, rainfall, and soil textures
are generally more important environmental factors, affecting the landslide occurrence due to higher variation of
posterior probabilities through their corresponding classes. Figure 2also shows that the landslide occurrence is
highly sensitive to: elevation when the elevation varies within the range of 4.5ft to 340.5ft(categories are from 1
to 7); curvature varies between -0.464 to -0.054(category is equal to 4); slope varies from 10.24° to
15.24°(category is equal to 3); lands where is covered with trees (category is equal 2);soil texture composed from
sandy clay loam (category 2), and annual rainfall within the range of 216 to 27Imm which corresponds to
category 3. The two remaining attributes roughness and relief do not show a significant effect on landslide
occurrence and the posterior probabilities fluctuate smoothly within the range of 0.45 to 0.55.

The effects of boundary complexity on posterior probabilities are significant for attributes elevation,
curvature, slope, relief, roughness, and land-use (Fig. 2a-f), while not for attributes soil types and rainfall. It may
be resulted from the latter two attributes are varied more uniform in space, at the same time were mapped with
lower resolutions compared to others.

4.2 Model validation

For validation purposes, different statistical indices are considered to assess and compare the accuracy of
different geometry types. ACC (Accuracy); TP (True Positive); FP (False Positive); FN (False Negative); TN
(True Negative); SST (True Positive Ratio); 1 — SFP (False Positive Ratio); PPV (Positive Predictive Value);
NPV (Negative Predictive Value); AUC (Area under the ROC curve) are computed to evaluate the reliability,
uncertainty, and accuracy of different geometries. The comparison is conducted between the test and prediction
datasets where the latter is generated from the trained BN model.
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Figure2.Posterior probability of Landslide given (a) Elevation(b) Curvature (c) Slope (d) Relief (e) Roughness (f) Landuse
(g) Soil texture (h) Annual Rainfall rate.
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Table 1 summarizes the results according to four types of geometry shapes. In this study, AUC is used to
determine the uncertainty and prediction performance of LSM, while the ACC, PPV, and NPV were calculated
to evaluate the accuracy of LSM modeling under different condition. Kappa was computed to show the reliability
of models. According to Table 1, a threshold equal to 50 percent is assumed as a benchmark to compare the
results of all statistical indices except Kappa. AUC values computed for irregular and circle polygons are higher
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than those of triangular and square polygons. This indicates the former are more reliable buffer shapes for BN

model development.

Tablel.Statistical indexes for model validation

Index Threshold frregular Circle  Triangle  Square
Polygon
10% 0.98902  0.98868 0.98902  0.98919
Kappa 50% 0.98645  0.98508 0.98593  0.98525
90% 0.98748  0.98696  0.98748  0.98765
ACC 50% 0.7407 0.8148 0.7685 0.8055
TP 50% 46 49 46 48
FP 50% 20 15 17 15
FN 50% 8 5 8 6
™N 50% 34 39 37 39
SST 50% 0.85 0.90 0.85 0.88
1-SFP 50% 0.37 0.27 0.31 0.27
PPV 50% 0.69 0.76 0.73 0.76
NPV 50% 0.80 0.88 0.82 0.86
AUC 0-100% 0.867 0.87 0.83 0.84

Figure 3 presents the receiver operating characteristic (ROC) curves of four types of geometry shapes. The
ROC curves depicttrue positive rate (sensitivity) versus false positive rate (1-specificity) and result with
successively chosen thresholds started from 0% (1, 1) to 100% (0, 0). Curves close to the left corner are
indicative of higher AUC values which further suggests higher accuracy in model performance. Results show
that the irregular and circular polygons produced better prediction performance than those oftriangular and
square polygons due to higher AUC index values as shown in Table 1.
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Figure3.ROC curves of irregular mapped landslide boundary (blue), circle mapped landslide boundary (orange), triangle
mapped landslide boundary (green), square mapped landslide boundary (red)
5 Conclusion
In this study, we evaluated the effects of mapping boundaries on LSM by comparing the results yielded from BN
model predictions. The main findings of this study can be summarized as the following:

1. The high influencing attributes contributing the LSM are elevation, curvature, slope, relief, roughness,
and land-use, while soil types and rain fall attributes present insignificant impact on LSM development.

2. The occurrence of landslide is highly sensitive when elevation ranging from 4.5ft to 340.5ft, curvature
ranging from -0.464 to -0.054, slope ranging from 10.24° to 15.24°; lands where is covered with trees, soil
texture composed from sandy clay loam, and annual rainfall ranging from 216 to 271 mm.

3. Overall, results show that circular and irregular polygons generated higher accuracy and lower uncertainty
compared to those associated with triangular and square polygon shapes.
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