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Abstract:This paper presents application examples of Geotechnical lasso (Glasso) in three-dimensional underground
stratification of actual sites,Hollywood (South Carolina, USA) (Stuedlein et al. 2016) and Baytown (Texas, USA). Glasso is a
data-driven site characterization method for estimating trends and detecting layer boundaries consistently and is based on a
sparse machine learning method called least absolute shrinkage and selection operator (lasso). Cone penetration test (CPT)
data are available in both sites, and they were converted to the soil behavior type (SBT) index for the underground
stratification. The performance of Glasso in underground stratification was evaluated with validation set based on two
performance metrics, root-mean-square error (RMSE) of /. and identification ratio (IR) of SBT. Glasso is capable of
detecting layer boundaries without the need to choose basis functions, and this is a notable advantage of Glassoin
underground stratification.
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1 Introduction

In several countries, the underground space is an integral component in urban planning. This requires to
implement undergrounds tratification that can be used for the design of geotechnical structures, such as
foundations of buildings, bridges, and tunnels. In particular, the requirement for three-dimensional (3D) spatial
information is rapidly increasing because it provides significant spatial insights, precise and objective
representations of real-world phenomena, and accurate interpretation of spatial relations. Notwithstanding the
high demand for 3D underground stratification, the characteristics of geotechnical data is considered as
Multivariate, Uncertain and unique, Sparse, and In Complete (MUSIC) (Phoon et al. 2016), and the “sparsity”
particularly leads to difficulty in implementing the accurate/reliable underground stratification. In this paper,
Geotechnical lasso (Glasso, Shuku and Phoon 2021) is used as a main method to address this difficulty.

Glasso is a data-driven site characterization method for estimating trends and detecting layer boundaries of
soil properties consistently, which is based on a machine learning method called least absolute shrinkage and
selection operator (lasso). With Glasso in underground stratification, no discussion on how to select the basis
functions to estimate.This is one of the great advantages compared to cases taking regression-based approaches.

Actual sites for the underground stratification are Baytown (Texas, USA) (Stuedlein et al. 2012) and
Hollywood(South Carolina, USA) (Stuedlein et al. 2016). Cone penetration test (CPT) data are available in both
sites, and they were converted to the soil behavior type (SBT) index for the underground stratification. The
practical performance of Glasso in underground stratification was evaluated with the root-mean-square error
(RMSE) of /. and identification ratio (IR) of soil types.

The objective of this study is to implement the underground stratification to two real case histories,
Hollywood and Baytown in the US. The straightforward computational implementation of this geotechnical
lasso (Glasso) is not feasible in 3D problems because significant runtime and memory exceedance. In this paper,
Glasso and the efficient ADMM (eADMM)(Shuku et al. 2021) are applied to address this difficulty.

2 Glasso for 3D underground stratification

This section outlines geotechnical lasso (Glasso)(Shukuand Phoon 2021), which is a lasso-based method to solve
underdetermined problems in geotechnical engineering, especially for underground stratification. Underground
stratification problems are usually underdetermined because the number of available data is much smaller than
that of unknown parameters.In a lasso-based method, this underdetermined problem is solved by minimizing the
following objective function:
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where y is an m-dimensional observation vector, X is an n-dimensional (unknown) parameter vector, and A is an
m X n matrix whose entries are 0 or 1,and | - | denotes absolute value or /1 norm, A is regularization parameter
that adjusts the significance of the regularization term, and B is a linear operator (matrix) to impose some
“sparsity” in x. A sparsity between adjacent pixels/cells called structured sparsity can also be imposed.Lasso
with theD1 matrix has also been applied in detecting soil layer boundaries in depth-dependent profile data
(Shuku 2019; Shuku et al. 2020). A useful form of the matrixB includes a matrix that penalizes the discrete
second derivative, D2 to yield a piecewise linear fit (Tibshirani 2014). These two types of structured sparsity are
widely used in trend estimation and image processing.

Spatial variability is, in general, markedly anisotropic, with a large degree of homogeneity (and, hence, a
stronger correlation structure) in the horizontal direction. This is because most depositional processes result in
stratigraphic geometries that are not significantly distant from a set of horizontal layers with vertical thickness
significantly less than the horizontal extension. Therefore, it is suitable to use different A values for the vertical
and horizontal directions, and where the subscripts “v” and “h” depict vertical and horizontal directions
respectively. Minimizing Eq. (1) is subtle because of the multiple nondifferential ¢1 term. Therefore, we

reformulate Eq. (1) as follows for ease of computation.
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where | - | denotes absolute value, and the dimensions of B matrix and x vector are 3m-by-n and n
respectively.This is a generalized lasso specialized for geotechnical problems and applicable to underground
stratification and geophysical tomography (Shuku 2019).If matrix A is designed based on spatial interpolation
methods such as a polynomial regression and kriging, the Glasso can manage irregular datasets with incomplete
data, for example, soundings with unequal length and several missing values owing to equipment fault or other
reasons. This is a notable advantage of the Glasso because data incompleteness is a common problem in
geotechnical practice.
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3 Applications to real cases

3.1 Baytown, Texas
Glasso was applied to underground stratification at an actual site in Baytown, Texas, located approximately 50
km east of Houston (Stuedlein 2012).Cone penetration tests (CPTs), nine in total, three borings (CPT-1 to
3)drilled to an approximate depth of 15 m and six borings (CPT-F1 to 6) drilled to an approximate depth of 5.5
m, were performed at this site. The layout of the CPTs is shown in Figure 2The filled square indicates CPTs for
training, and the white circle indicates CPTs for validation. Thedetails of the testing program in Baytown site are
given by Stuedlein (2012).

We estimated the 3D spatial distribution of soil behavior type index (/c) and soil behavior type (SBT) using
6 CPT data. We adopted the definitions of /cand SBT proposed by Robertson (2016) and Robertson and Wride
(1998). The ground was modeled with 1.0m x0.1m x 1.0m cuboids, and the total number of elements that
corresponded to the number of unknown parameters », is 50,700. We considered two types of matrices,Di1 and
D>, for B in Glasso. D1 and D2 achieved a constant and linear trend in the estimates, respectively. We write “Dy
model” and “D> model” for simplicity. We determined two regularization parameters,Av and An using L-curve
method.
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Figure 2.Layout of CPTs in Baytown site (Modified from Stuedlein 2012)
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Figure 3shows a comparison of the /. trends estimated by the Glasso to the corresponding real /. data. The
regularization parameters are set to(Av, An) = (0.1, 0.5)for the D1 and D2 models. The red thick lines indicate
estimated trends, and cross marks indicate the real /.data. The profiles estimated by the D1 and D2 models record
the actual data trends almost accurately. Only CPT-F1 boring estimation of /cmight be overfitting with other data
because the estimation line was far from the actual data at the depth of 1-4m.Figure 4 shows a comparison of the
SBT profiles. In the figure, the red thick lines and cross marks indicate the SBT classified by estimated /. and
actual /., respectively. Only the estimated SBT in CPT-F1 is a little different from the actual one at the depth of
1.5-3.5m.
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Figure 3./, profiles estimated by Glasso in Baytown site (left; D; model, right; D> model)
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Figure 4. SBT profiles estimated by Glasso in Baytown site (left; D; model, right; D> model)

To quantitatively evaluate the performance of the Glasso, the root-mean-square error (RMSE) the /. and
identification ratio (IR) of SBT in Baytown site analysis are summarized in Table 1. The RMSE of the /cand IR
of the SBT are defined by

RMSE = /ii(y,. —x) (3)
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where y; is the actual /. data at ith depth, x; is the estimated /. value at ith depth, and SBT(y:) and SBT(x;) are the
SBTs corresponding to y: and x;. There are no significant differences between the results of theD: and D2 models.
The models show similar performance in terms of RMSE and IR.

Table 1.RMSE and IR of underground stratification in Baytown site

Boring RMSE IR
CPT-2 0.250 0.693
D model CPT-F1 0.245 0.685
CPT-Fo6 0.383 0.574
CPT-2 0.175 0.680
D, model CPT-F1 0.426 0.519

CPT-F6 0.236 0.630
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3.2 Hollywood, South Carolina

Another actual site is located in Hollywood South Carolina, approximately 20 km west of Charleston and 20 km
north of the Atlantic coast line (Stuedlein 2016). Cone penetration tests (CPTs), 25 in total, all borings drilled to
an approximately depth of 13 m, were performed at this site. The layout of the CPTs is shown in Figure 5 Details
of the testing program in Hollywood site are given by Stuidlein (2016).

We estimated the 3D spatial distribution /c and SBT using 17 CPT data. The ground was modeled with 0.5m
x0.lm X 0.5m cuboids, and the total number of elements that corresponded to the number of unknown
parameters 7, is 60,480. Four validation sets are prepared as shown in Table 2. In this paper, we mainly show the

results of validation set 1 only for simplicity.
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Figure 5.Layout of CPTs in Hollywood site (Modified from Stuedlein 2016)

Table 2. Validation sets in Hollywood site

Validation 1 Validation 2 Validation 3 Validation 4
P1-1 P1-1 P1-1 P1-1
P2-1 P2-1 P2-1 P2-1
P5-1 P5-1 P5-1 P5-1
P1-7 P1-6 P1-9 P1-8
P2-7 P2-6 P2-9 P2-8
P3-7 P3-6 P3-9 P3-8
P4-7 P4-6 P4-9 P4-8
P5-7 P5-6 P5-9 P5-8
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Figure 5./.and SBT profiles estimated by Glasso with D; model
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Figure 5shows a comparison of the /. trends estimated by the Glasso to the corresponding real /. data in the
case of validation 1. The regularization parameters are also set to(Av, An) = (0.1, 0.5) for the D1 model and D2
model. The red thick lines indicate estimated trends, and cross marks indicate the real /.data. The profiles
estimated by the D1 and D2 models record the actual data trends accurately. Figure 6 shows a comparison of the
SBT profiles. In the figure, the red thick lines and cross marks indicate the SBT classified by estimated /. and
actual /., respectively. The SBT estimated by the Glasso is consistent with the actual data.
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Figure 6./.and SBT profiles estimated by Glasso with Dsmodel

The RMSE of the /. and IR of SBT in Hollywood site are summarized in Table 3.The performance of the D2
model is better than that of the D1 model in terms of both RMSE and IR.Figures 7 and 8 show the color map of
I. and SBT distribution estimated by the Glasso with the D1 and D2 models.The D: model estimates simpler
models compared to theD2 model because the matrixD: assumes thatx is constant in each layer whereas D2
assumes thatx has a linear trend. Although the matrixB significantly affects the GLasso results, it is difficult to
select an appropriateB matrix in advance. The selection of the B matrix is a typical model selection problem and
can be solved using well-known information criteria, such as AIC and BIC (Bishop 2006; Murphy 2012). We
can consider the matricesD: and D2 in GLasso by reformulating Eq. (1) and (2): This can be a promising
approach to manage the selection of the matrixB.

Table 3.RMSE and IR of underground stratification in Hollywood site

Boring RMSE IR Boring RMSE IR
P1-1 0315 0.346 P1-1 0.253 0.606
P2-1 0.368 0.308 P2-1 0.310 0.554
P5-1 0.384 0.357 P5-1 0.373 0.566
o D P1-7 0.445 0.341 D, P1-7 0.391 0.462
Validation 1 Ly pog 0.364 0.376 model  P2-7 0.307 0.617
P3-7 0.345 0.356 P3-7 0.363 0.556
P4-7 0.301 0.405 P4-7 0.291 0.570
P5-7 0.349 0.326 P5-7 0.338 0.530
Pl-1 0.326 0.346 Pl-1 0.269 0.579
Mean D P2-1 0.379 0.308 D, P2-1 0319 0.552
model model

P5-1 0.394 0.357 P5-1 0.363 0.552




612 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

45

4

—3i5

o 3
25
K
20
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Figure 8. Colormap ofl.distributionof validation 1 in Hollywood site (left; D; model, right; D, model)

4 Conclusion

This study presented application examples of Glasso for two real case histories of 3D underground
stratification.The applicability of Glasso was investigated by comparing the estimated results with validation
dataset.The comparisons showed that Glasso can be a promising method for underground stratification in
geotechnical engineering.
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