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Abstract:The robust geotechnical design (RGD) is widely used in retaining wall, foundation and deep excavation because it
can balance construction cost and structural safety well. For deep braced excavation, it was well recognized as a complex
system design in geotechnical community because its multiple failure modes and high uncertainty. In this study, responses
surface based-robust design method (RSM-RGD) was applied in the design of supported excavation. Different from
traditional robust design, the responses surfaces as an alternative model of finite element model was used to establish failure
functions. Both one kind of ultimate limit failure mode and two kinds of serviceability limit failure modes of retaining system
were taken into account. Via proposed method, a multi-objective optimization framework was modeled to find the optimal
design with lower construction cost and higher robustness and safety. Finally, the whole steps of proposed method were
illustrated by a case study. The result indicated that the multi-objective optimization model and genetic algorithm has an
efficient effort on solving Pareto frontiers.
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1 Introduction

High uncertainty is an inherent behavior of soil and rock physical and mechanical parameters, which is well
recognized by the geotechnical engineering community(Phoon and Kulhawy 1999). Robust geotechnical design
(RGD) method was also an efficient method to carry optimization design(Juang and Wang 2013). RGD method
aimed to choose the optimal design with reasonable economic cost and high safety. Nowadays, there are some
studies that develops RGD method in geotechnical design, such as rectangular spread foundations (Juang et al.
2014), shield-driven tunnels (Gong et al. 2014), and braced excavations (Khoshnevisan et al. 2015).

However, for RGD method, limit state functions and correlation between failure modes were key
points(Xiao et al. 2020). For reliability analysis with multiple failure modes and random variables, limit states
functions were hard to determine directly. Zhong et al. (2020) presented system reliability model of shallow
foundations based on bearing capacity, bending and shearing limit states functions. Zhang et al. (2019) and Fu et
al. (2019) adopted the limit states functions from the manual of American Society for Mechanical Engineers and
analyzed system reliability of pipelines via multiple normal distributions.Li et al. (2017) adopted moving least
square method to determine limit state functions of tunnel allowable settlement, allowable stress and allowable
horizontal deformation. Khoshnevisan et al. (2017) firstly analyzed the influence of uncertainty of soil
parameters on safety factors of excavation, then established the surrogate model between uncertainty vectors and
safety factors via response surface model.

Moreover, multiple objective optimization algorithm also played a significant role in RGD method. NSGA-
IT algorithm proposed by Deb et al. (2002) was a main method to solve multiple objective optimization problems
in engineering. Recently, other new optimization algorithms were developed, such asNon-dominated Sorting
Genetic Algorithms(Deb and Jain 2014; Jain and Deb 2014). They have a better performance than NSGA-II on
solving optimizations. Nevertheless, there are few studies on application of these algorithm in practice.

In this study, RGD method was applied the design of retaining system of deep excavation.Section 2
introduced multiple response surface model and system reliability model in detail. Section 3 introduced
background of case study, arrangement of input variables and verification of surrogate model. Section 4
illustrated the whole framework of RSM-RGD and analyzed the results.
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2 Methodology

2.1 Multiple responses surface method (MRSM)

Responses surface method(RSM) was a general way to fit limit state functions in reliability analysis, especially
for problems with multiple variables and complex failure function. For robust design, both noise vectors and
design vectors are considered as input variables (Khoshnevisan et al. 2017).Noise vectors are parameters of soil
properties with high uncertainty, such as soil cohesion, friction angle, and elastic modulus. Design vectors are
geometry parameters of retaining systems, such as length and thickness of retaining wall,section area of inner
struts, which are easy to be controlled by human beings. Therefore, MRSM was adopted to build limit state
function. MRSM is expressed as Eq (1):
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where xiand y;were noise vectors and design vectors, respectively. flx;y:) were excavation responses such as
deflection and bending moment of retaining wall, ground settlement and deformation of exist building.

Traditional RSM only analyzed the correlation between random variables and output, however, MRSM also
considered the undetermined coefficients aias variables. The coefficients were functions of design vectors. The
influence of noise vectors and design vectors on excavation responses were characterized in MRSM via
combining the undetermined coefficients and input variables.

In order to guarantee the performance of responses surface model, the design points should cover design
pool and space of random variables uniformly. The arrangement of design points is shown in Table 1.

Table 1.Calibration points for multiple response surface model

Noise vectors  x; X xn  Design vectors  y; V2 e Vn

1 M M M 1 U u U

2 L M M 2 u-3o u u

3 u M M 3 ut3o u u

4 M L M 4 u u-3o u

5 M U M 5 u ut3o u
2m M M L 2n u u ... 30
2m+1 M M U 2n+1 u u ... ut3o

Note: L = Lower bound of design vectors; M = mean value of design vectors; U =
upper bound of design vectors;u= average of noise vectors; o= deviation of noise
vectors.

From Eq (1) and Table 1, for a multiple responses surface model with m design vectors and » noise vectors,
(2n+1)e(2m+1) design points were necessary. After determining the number of design points, the corresponding
value of limit state functions f{x;y:;) were obtained via calculating finite element models. With enough design
points and limit state functions value, the undetermined coefficients b; in Eq (1) were determined.

Finally, the responses surface model was taken to calculate the reliability index via Monte Carlo Method
(MCS), as shown in Eq (2).
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i

where fi is the reliability index of i failure mode, o is standard deviation of fi, J; threshold of i failure
mode.Generally, 100000 times Monte Carlo simulations is enough.

2.2 System reliability model

From section 2.1, there are multiple failure modes, the correlation between failure modes is important. Ignorance
of correlation will under-estimate the safety of retaining system (L et al. 2017; Xiao et al. 2020). In this paper,
the spearman correlation matrix was adopted to represent correlation of excavation responses. Based on previous
studies (Fu et al. 2019; Fu et al. 2021), spearman matrix was a suitable index to represent correlation of failure
modes. To calculate the system reliability index of excavation, system reliability model was taken herein, which
is shown in Eq (3).
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where R is spearman correlation matrix of excavation responses, Bi=(f1,52...pn)" is reliability index of each
failure mode, ,,+= and g is system failure probability and system reliability index, respectively. @(.) is m-
P B,

dimensional standard normal cumulative distribution functions.

3 Case study

3.1 Background

In this paper, a deep excavation project in Taipei was adopted to illustrate the proposed method (Xuan et al.
2009). The profile of excavation was shown in Figure 1. From Figure 1, the width of excavation is 35m, the
depth of excavation is 18.5m.
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Figure 1. Profile of excavation and original design in Taipei.

In this case, there are five design vectors: width (7) and depth (D) of retaining wall, compressive modulus
(EA1, EA2) of steel struts, horizontal space of struts (S) and six noise vectors: elastic modulus (£, E2), soil
cohesion (ci, ¢2) and friction angle (¢1, ¢2) of silty clay layer and clayey silt layer. However, for design vectors D
and ¢, quartic functions have a better performance on fitting limit state functions than quadratic functions. For
other design vectors and noise vectors, quadratic functions were used. Therefore, there are totally
(2X34+4X2+1)X(2X6+1)=195 design points. The arrangement of design points was shown in Table 2.

Table 2.Arrangement of design points.

Design vectors Design values Noise vector  Design values  Standard deviation,s;  Distribution
E; (MPa) (10,16,22) 2 lognormal
D (m) (25,28,31,34,37) ¢/ (kPa) (25,40,55) 5 lognormal
¢ (m) (0.6,0.8,1.0,1.2,1.4) ) (23,32,41) 3 lognormal
EA; (kN) (5,6.5,8) X103 E> (MPa) (16,40,64) 8 lognormal
EA> (kN) (8,11,14)X10° ¢ (kPa) (55,100,145) 15 lognormal
S (m) (3,4,5) 02 (°) (25,34,43) 3 lognormal

3.2 Verification of responses surface model
Moreover, 300 random cases were generated to evaluate the performance of responses surface model, as shown
in Figure2. From Figure2, R’ of quartic functions is 0.9769, 0.9733,0.9586, 0.9506. Root mean squared error
(RMSE) is 0.503, 9.507, 16.354, 0.504, which satisfies requirements of surrogate models. On the other hand,
based on the excavation responses of train set and test set, the correlation between excavation responses was
estimated by spearman correlation matrix.

At last, fi and By of original design was obtained from Monte Carlo simulations and system reliability
model. i equals to 0.73, 5.99, 1.49, 0.64. Sy equals to 0.42.

4 Response surface based-robust design framework

From section 2, robust geotechnical design based on responses surface model (RSM-RGD) was proposed.
Robust design aims to find the optimal design with higher robustness and lower cost. For deep excavation, cost
mainly included retaining wall (Qw) and struts (Qs) (Juang et al. 2014), which is expressed as Eq (4).
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where Ucand Usare the unit cost of concrete and steel, respectively.U. equals to 330$/m* and Us equals to 0.6
$/kg.Wis total weight of struts, p is density of struts, which equals to 7.85 x 10°kg/m*.P. is the perimeter of

excavation, B and L are width and length of excavation.B equals to 35m and L equals to 200m.S; and S> are the

unit area of two type struts. Nx and N, are row number of struts in vertical and horizontal direction.

Based on the aim of robust design, the multiple objective optimization model can be adopted to solve robust
design, which is shown in Eq (5).
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Figure 2. Verification of responses surface model (a) wall deflection (b) ground settlement (c) first type strut (d) second type

strut.
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In this paper, the target functions are cost and system reliability of deep excavation. The constraints are the
limitation of reliability index of single failure mode.The design pool of design vectors and statistical character of
noise vectors were shown in Table 2.

The whole framework of RSM-RGD was shown as followings. The main procedures included six steps.

(1) Determine design pool and space of random variables.

(2) Arrange design points and establish responses surface model.

(3) Determine the threshold of failure mode and limit state functions.

(4) Calculate reliability index via Monte Carlo simulation.

(5) Evaluate the spearman correlation matrix and calculate system reliability index via multi-dimensional
lognormal distribution.

(6)Obtain Pareto frontier and optimal design based on multiple objective optimization model.

PIatEMO toolbox in MATLAB 2020a, which has a better performance on solving non-linear multiple
objective optimizations, was adopted in this paper (Ye et al. 2017).PlatEMO toolbox included many optimization
algorithms such as non-dominated Sorting Genetic Algorithms (NSGA-II, NSGA-III, ANSGA-III) (Deb et al.
2002, Deb and Jain 2014, Jain and Deb 2014), Many-objective evolutionary algorithms (MaOEA/IT) (Sun, Xue
et al. 2019)and Cellular genetic algorithm (MOCell) (Nebro et al. 2009)etc.In this paper, NSGA-III algorithm
was adopted in this paper. The generation of NSGA-III algorithm was 50, the number of design points on Pareto
frontiers was 30. The constraint functions were set as f>1.5.

5 Results

Via RSM-RGD framework, the design points and Pareto frontiers were obtained, as shown in Figure 3. There is
a positive correlation between economic cost and system safety. The design point with the lowest cost and the
highest system reliability called “ideal point”, which is used to choose optimal design. The optimal design was
the design point on Pareto frontiers with longest distance from ideal point.In this case study, the optimal design
was marked with blue pentagonal. The design case was D=29m, =1.2m, EA;=8 x 10°kN, EA>= 1.4 x 10°kN,

S=4m, the economic cost is 32201368, the system reliability S is 3.725.
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Figure3. Pareto frontiers and optimal design.

In this study, a response surface based robust design method (RSM-RGD) was presented. Both one bearing
capacity limit state and two serviceability limit states were taken into account. Based on the analysis above, the
following conclusions are arrived at:

(1) The multiple response surface model had a better performance on predicting the value of excavation
responses. The reasonable expression of RSM should be lower than fourth power, too complex expression will
lead to overfitting.

(2) In order to improve efficiency on multiple objective optimization model, discrete optimization was a
better way.NSGA-III algorithm was also good at solving multiple objective optimization model. For two-
objective optimization model, 30 generation samples are suggested to determine optimal solutions.Via discrete
optimization and NSGA-III algorithm, the Pareto frontiers were obtained easily.

(3) For series systems, the system reliability depends on the failure mode with minimum reliability index.
System reliability model is a comprehensive method to estimate integral safety of braced excavations, which
takes less calculation efforts than considering failure modes one by one.
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