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Abstract: This study proposes the integration of analytical geotechnical methods and statistical tools to develop a prediction
model for the factor of safety (FS) of homogenous soil slopes as a function of soil and geometry properties. The proposed
model is developed by combining statistical design of experiment (DOE), artificial neural networks (ANN), and limit
equilibrium (LE) analysis to generate suitable combinations of input factors and for data analysis. The model adequacy as a
prediction tool for preliminary design is evaluated by measuring accuracy using a case histories dataset. The performance
results indicate that the predicted values of FS have a high correlation with the computer-simulated values (analytical values),
indicating that the developed model compares to the use of performing analysis in LE software without the need for special
packages. However, all the compared tools fall into the low accuracy zone if the threshold between stability and failure is set
to 1. For achieving high accuracy (area under the curve >0.85) from the proposed classifier, a safety margin of 20% should be
used. In other words, for a 1.20 FS threshold between stability and failure, the proposed model classifies with high accuracy
for the analyzed cases.

Keywords: Algorithms; Data processing; Factor of safety; Slope stability; Artificial neural networks; Statistical design of
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1 Introduction

In many areas, slope instability is a major threat. In the geotechnical field, slope stability is a key analysis
conducted to verify the safety of cuts, embankments, and/or natural slopes against failure. In this regard,
estimating the factor of safety (FS) of a slope is one of the main tasks when performing slope stability analyses.
There are several analytical methods available to perform a slope stability analysis, with limit equilibrium (LE)
and numerical methods (generally, finite element (FE) and finite difference (FD)) being the most common.
Several authors such as Memon 2018; Trinidad Gonzalez 2017; Cheng et al. 2007; Griffiths and Lane 1999;
Duncan 1999; Christian 1999; and have presented the basics of the analytical techniques and some comparisons
between methods. However, the use of special software is required to perform such analyses. For this reason,
authors such as Jin-kui and Wei-wei 2018; Kosti¢ et al. (2016); Liu et al. 2014; Das et al. 2011; Samui and
Kothari 2011; Zhao 2008 have implemented statistical tools, support vector machines, and genetic algorithms to
create mathematical expressions for the FS. These models aimed to develop reliable estimation tools with a
simpler application than traditional analytical methods. Kosti¢ et al. (2016) generated synthetic information by
applying response surface techniques as a data generator and a solution using the LE approach (Spencer
method). This study proposes the integration of analytical geotechnical methods and statistical tools to develop a
prediction model for FS of homogenous soil slopes as a function of soil and geometry properties. The proposed
model is developed by combining statistical design of experiment (DOE), artificial neural networks (ANN), and
LE analysis to generate suitable combinations of input factors and for data analysis. The aim of the proposed
model is a simplification of performing slope stability analysis without the need for special software while
providing the reliability of the prediction tool when compared to the field condition. Hence the main objectives
of this paper are: (1) to develop a prediction model for FS of homogeneous slopes with an augmented input
space to overcome the constraints of the existing models; and (2) to provide the correlation between the model
and the field condition, which was not previously done for models developed with synthetic data.

2 Applied Methods

2.1 Pre-processing and data generation

DOE and LE analysis are blended to generate a suitable combination of input factors for later data analysis. A
multifactor (i.e., input), full factorial design is used as a synthetic data generator (combining slope geometry and
soil properties). Six factors are selected for the analysis following findings from previous research regarding the
factors controlling the mechanism of failure (Sah et al. (1994), Sakellariou and Ferentinou (2005), Yang et al.
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(2004), Ahangar-Asr et al. (2010), Samui and Kothari (2011) and Manouchehrian et al. (2014), Kosti¢ et al.
(2016), Trinidad Gonzalez et al. (2020)). The multifactor, full factorial design generated 4,032 combinations of
slope and soil properties in a complex, highly dimensional input space. Each factor and its levels (e.g., L1 is
Level 1) are given in Table 1.

Table 1. Soil and geometry properties for generating the multilevel full factorial design

Factor L1 L2 L3 L4 L5 L6 L7
Slope height (H, m) 6 15.5 25 345 44 53.5 63
Slope inclination (£, °) 10 30 50 70

Effective Cohesion (c¢', kPa) 5 20 35 50

Effective friction angle (¢', °) 10 22 34 46

Pore pressure coefficient (7,) 0 0.3 0.6

Soil unit weight (y, kN/m?) 12 19 26

The results of the 4,032 (7x4°x3?) input combinations are then used to perform LE analyses to determine the
F'S for each condition. F'S from the LE analysis corresponds to the "observed" or "modeled" response, while the
F'S from the generated ANN model corresponds to the "fitted" response. For the stability analysis, LE analyses
are conducted. Many different types of software have been developed based on limit equilibrium methods such
as proprietary software and specifically programmed loops that enable an analysis of a given situation using
different procedures. In this study, Slide 2018 (Rocscience Inc. 2018) and the Spencer method are used. The
Spencer method satisfies all the requirements for static equilibrium (Duncan et al. 2014). Non-circular mode of
failure with auto refine search is used as a search method. The boundary conditions are set sufficiently far not to
influence the FS. A sketch of the section of a slope with the input properties for the LE analyses is shown in

Figure 1.
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Figure 1. Graphical representation of inputs for LE analyses

2.2 Fitting approach and performance measurements

After pre-processing, the ANN prediction model is generated. ANN are non-linear regression or classification
model structures consisting of an input layer (the properties or variables), the hidden layers (or hidden units that
relates the input and output from a linear combination of the inputs), and the output layer (the fitted response or
responses of the system). The ANN used in this study is a fully connected, multiple-layer perceptron with an
input layer of six neurons, a hidden layer of eight neurons, and an output layer of one neuron. The model
architecture is presented in Figure 2. For the data classification, 1/3 of the dataset was assigned to the validation
set.
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Figure 2. Schematic illustration of ANN structure.
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The mathematical representation of the model is given by Equation 1 as
y=pB + 2?:1[W0j'fj(bAj + 2 Wijxi)] 1)

where f3, is the bias of the output layer, wy; is the connection weight between neuron j of the hidden layer (j =
I to 8) and the output layer; b,; is the bias at neuron j of the hidden layer; w;; is the connection weights between
the input variable i (for i = I to 6) and neuron j of the hidden layer; x; is input i, f; is the activation function at
the hidden layer. The activation function used in this study is the identity transformation (Gaussian) that for the
variable j (neurons (j = [ fo 8) is defined as

£G) = eCar iy @

During the training stage, the weights are adjusted using wOj by learning from the training data set. The
sum of the adjusted weights is then added to the bias of the output layer B,. A quasi-Newton method, BFGS
(Broyden—Fletcher—Goldfarb—Shanno algorithm), iterates for optimization of the penalty parameter in the
training stage. Simultaneously, the BFGS algorithm monitors the likelihood function of the validation set (an
independent set that is used to check model performance following Trinidad Gonzalez et al. 2021; Ghasemi et al.
2019; Cheng and Titterington 1994). A cross-validation technique is used to test the effectiveness of the model
and avoid overfitting (Ghasemi et al. 2019). The holdout procedure is applied to determine which data are
randomly assigned to either training or validation sets. The performance of the final model is measured based on
the statistics summarized in Table 2.

Table 2. Statistics for performance evaluation of the generated ANN model

Statistics Defined as
n
The "average difference" as the _1 o
estimate of the model bias AD = nZ(y =9
i=1
The "average absolute n
difference" as the averaged _ lz A
absolute distance between fitted AAD = N4 i =31
and simulated values =1
The correlation between the - nYis vy — Qs ) Cisa 9)
simulated and fitted values it N N 5 o 2
Jn Yyt — Q) \/n P Al O )
Generalized  coefficient  of 2,
determination ereneralized =1- en(Lﬁ bavuar)

where 7 is the number of input vectors, y; is the i simulated response, J; is the i fitted response, and LJ is the
negative loglikelihood of the set using the model parameters on the training data.
3 Results and Discussions

3.1 Model performance
The general components of the model equation (the estimates) are given as follows:

y=171 + 719 f; + 40.78x f, £341 x f3+4.075x f, + 1.25x f5 £+ 14.72 x f, +
10.73x f, + 4.63 x f; (3)

The summary of the results from the performance evaluation is presented in Table 3.

Table 3. Summary of Statistics for performance evaluation

Statistics Training Validation
AD 0.007 0.01
AAD 0.05 0.06
Tt 0.998 0.998
*R? 0.997 -
* R? = TG oneratized

The results indicate that the predicted values of FS have a high correlation with the computer-simulated
values as well as low AD and A4D. Hence, the prediction tool modeled the response well. The observed vs.
predicted plots for both training and validation sets are presented in Figure 3.
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Figure 3. Observed vs. predicted plot for the best ANN model

An input analysis is conducted to verify the standardized effect of the input properties on the response.
Results are presented in Figure 4, indicating that for the input space evaluated, the inputs with larger effects on
the response are the inclination angle and the friction angle. The results are in agreement with the ones presented
by Sakellariou and Ferentinou (2005) when performing a parametric study in an ANN model generated using a
genetic algorithm, and Jin-kui and Wei-wei (2018) when conducting a sensitivity analysis applying the basics of
orthogonal design. Results presented in Figure 4 also indicate that interactions among the inputs also affect the
response. Main effects come from changes in the response due to changes in the inputs independently, while
interaction effects come from changes in the response due to the pairing of multiple factors.
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Figure 4. Assessment of variable importance (input's effect over the response)

3.2 Application and Comparisons with Previous Models

The comparison follows (1) quantification of prediction capabilities in a wider input space when compared to
analytical solutions and (2) quantification of accuracy when compared to the field condition. The comparisons
are conducted with independent datasets not used for the model generation. The models presented by Kosti¢ et
al. (2016), Manouchehrian et al. (2014), Ahangar-Asr et al. (2010), Yang et al. (2004) are compared with the
proposed model (TG Model). All but Kosti¢ et al. (2016) models used the same data set of slopes presented by
Sah et al. (1994). Kosti¢ et al. (2016) model was created with a synthetic dataset like in the present study. The
constraints to avoid extrapolation are specified in Table 4.

Table 4. Range of inputs from the compared prediction models updated from Kosti¢ et al. (2016)

Kosti¢ et al. Manouchehrian et Ahangar-Asr et Yang et al.
Tnput TG Model (2016) al. (2014) al (2010) (2004)
S 10-70 25-70 16-53 16-53 16-53
o' 10-46 10-50 0-45 0-45 0-45

H (m) 6-63 6-10 3.6-214 3.66-214 3.66-214
Fu 0-0.6 0-0.5 0-0.5 0-0.5 0.11-0.5
¢’ (kPa) 5-50 0-50 0-50 0-150.05 0-150.05
y (kN/m3) 12-26 16-20 12-28.44 12-28.44 12-28.44

Twenty random combinations of slopes are selected and modeled with LE analyses to determine the FS
using the Spencer method. The summary of the performance from the comparison is presented in Table 5. The
results indicate that for the models created from the field database, the 74 value is considerably low compared to
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the models from the synthetic database (Kosti¢ et al. (2016) and TG model). This is expected because Kosti¢ et
al. (2016) and the TG model are developed applying analytical solutions. The results are used to demonstrate that
the proposed model prediction capabilities compare to performing LE analysis without the need for special
packages. However, an agreement with analytical solutions does not necessarily guarantee agreement with the
field condition. Hence, the purpose of the second comparison is to evaluate how the mathematical tools perform
when predicting the real condition of stable and unstable slopes that is the end goal of prediction.

Table 5. Summary of Statistics for performance evaluation, testing sets

Statistics TG Model Model 2016 Model 2014 Model 2010 Model 2004
AD 0.62 0.63 0.84 0.34 0.28
AAD 0.34 0.37 0.64 0.29 0.23

it 0.99 0.99 0.64 0.48 0.73

To determine the model accuracy compared to the field condition, 51 cases are selected from the ones
presented by Sah et al. (1994); Manouchehrian et al. (2014). The cases are coded to zero when the slope is failed
and one when the slope is stable. TP is true positive, failed slopes classified as failed. TN is true negative, stable
slopes classified as stable. FP is false positive, slopes classified as failed that are stable. FN is a false negative,
slopes classified as stable that are, in fact, failed. From the results, a receiver operating characteristic (ROC)
curve and the area under the curve (AUC) are determined for each prediction tool. The ROC curve is a graphical
plot that illustrates the diagnostic ability of a binary classifier system when the discrimination threshold is
varied. The ROC is created by plotting TP, ;. or Sensitivity versus FP,,;, or I - Specificity. AUC measures true
positive rate and false positive rate trade-off, testing the quality of the value generated by a classifier (prediction
tool) then comparing the value to a threshold. Different thresholds for boundary stability and failure are set until
an AUC>0.85 is achieved. The closer a curve is to the point (0, 1), the more accurate a predictor is. According to
D'Agostino et al. (2018), as a rule of thumb, AUC above 0.85 means high classification accuracy, one between
0.75 and 0.85 moderate accuracies, and one less than 0.75 low accuracies. The studied FS thresholds are 1.0, 1.1,
1.2. The AUC of the ROC shows the ability of the test to distinguish between classes (in this study, failed and
stable slopes). The results are summarized in Figure 5.
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Figure 5. Receiver operating characteristic (ROC) curve and the area under the curve (AUC) to assess the ability of the
prediction tools to classify slopes as failed or stable

The results from Figure 5 indicate that, in general, for all studied prediction models, the proposed model
(TG model) achieved a higher AUC. When the threshold between failure and stability is set to £S of 1, the larger
AUC, corresponding to the TG model, is around 0.71. This translates to a low accuracy indicating that high
agreement between analytical methods and the prediction models does not guarantee a high agreement with the
field condition. The threshold between failure and stability is varied to verify the minimum FS needed to achieve
high classification accuracy from the compared prediction tools. AUC of 0.86 is achieved by applying a 20%
margin of safety to the use of the proposed model (TG model). These results are useful to set confidence
intervals to the results of predictions using models for preliminary design.
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4 Conclusions

A prediction model for the factor of safety (FS) of homogeneous soil slopes is developed by combining
statistical design of experiment (DOE), artificial neural networks (ANN), and limit equilibrium (LE) analysis to
generate suitable combinations of input factors and for data analysis. Six factors are selected for developing the
proposed model (TG Model). The performance results indicate that the predicted values of FS have a high
correlation with the computer-simulated values (analytical values). Hence, the prediction tool modeled the
response well. These results indicate that the developed model compares to the use of performing analysis in LE
software without the need for special packages. The proposed model has high accuracy in predicting FS when
compared to the field condition when a safety margin of 20% to denote the boundary between stability and
failure is used. The applicability of the TG model can be broadened by adding levels to the input factors (i.e.,
lower, and higher heights, lower and higher friction, and cohesion) or input factors for layered slopes. It should
be noted that the proposed approach should be used as a preliminary prediction tool and for simplified
approximations within the range of parameters for which it was developed.
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