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Abstract: Dam behavior prediction that can evaluate the operational states and provide important information for safety
control of dams, is an essential component of dam health monitoring. Statistical models based on regression methods have
been successfully established and applied in structural health monitoring of practical engineering. However, these
conventional models cannot capture the time series patterns and rely on manual parameter design. To address these problems,
considering that displacement prediction is a typical time series problem, this study proposes a displacement prediction
model of concrete dams using long short-term memory network (LSTM) based on deep learning techniques. The attention
mechanism is adopted to capture key characteristics that influence displacement significantly. Performance of the proposed
model is verified on a high arch dam. Results show that the LSTM based model outperforms the stepwise regression, back
propagation neural networks, and multiple linear regression models for dam health monitoring, indicating that the proposed
method is powerful and promising for arch dam behavior prediction.
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1 Introduction

Dams are important infrastructure for the national economy. However, due to different reasons, dams have safety

problems which affect the dam operation status and seriously threaten the safety of lives and properties of people
downstream (Kang et al. 2017). Therefore, it is necessary to monitor the dam behaviors using different
instruments, and identify abnormal behaviors in time (Mata et al. 2013). The observed dam displacement data
which can reflect global behavior of a concrete dam is used to create a model for dam behavior prediction (Mata
2011).

Traditionally, concrete dam health monitoring models are mainly divided into deterministic, statistical and
hybrid models. These mathematical models are established using displacement monitoring data, water pressure,
dam temperatures and time effects to analyze the relationship between observed information and structural
response of concrete dams (Kang et al. 2019a). Statistical models are established using various regression
methods, including the multiple linear regression (MLR) method (Mata 2011; Salazar et al. 2015), the stepwise
regression (SR) method (Xi et al. 2011) and principal component analysis regression (Yu et al. 2010), etc.
However, statistical models are difficult to model complex nonlinear characteristics between input variables and
dam responses, and are susceptible to the interference of uncertain variables.

Owing to the combined effects of internal and external factors, structural behavior of dams shows complex
nonlinear characteristics. Recently, various machine learning methods are adopted to enrich the conventional
models and establish new hybrid models for concrete dam health monitoring. Mata (2011) demonstrated that the
ANN is effective to assessment concrete dam behavior. Wei et al. (2019) applied back propagation (BP) neural
network to establish dam displacement monitoring model considering residual correction. The radial basis
function (RBF) networks are used to establish monitoring models to simulate the concrete dam displacement
(Kang et al. 2019a). However, ANN models are easy to fall into a local minimum when applied to complex time
series prediction. Deep learning is a branch of the machine learning field. It has powerful learning and
generalization capabilities, and has obvious advantages in implicit information mining.

Long short-term memory (LSTM) is an improved recurrent neural network (RNN) proposed by Hochreiter
and Schmidhuber (1997), which is efficient to learn the long-term dependence of information. LSTM can mine
hidden rules in time series data to increase the dimension of information, and was successfully used to predict
water table depth (Zhang et al. 2018), short-term building energy (Li et al. 2021) and dam displacement (Qu,
Yang and Chang 2019; Liu et al. 2020). However, the conventional LSTM converts the input sequence into a
fixed-length vector and saves all information, which limits the model memory, and it is easy to lose information
when dealing with long sequence problems. The proposed attention mechanism can solve this problem by
enhancing the focus on important variables, and ignoring irrelevant information (Bahdanau et al. 2014).
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In this study, a health monitoring model based on the LSTM and attention mechanism (LSTM-ATT) was
established to predict concrete arch dam displacement. To prove efficiency of the proposed model, a real arch

dam was used as an example to study. The performance was compared with that of MLR, SR, RBF networks,
and ordinary LSTM models.

2 Mathematic theory of dam health monitoring

The HTT (Hydrostatic, Temperature, Time) model, using measured temperature data to calculate thermal effect,
is a commonly used statistical model for dam health monitoring (Leger and Leclerc 2007). The HTT model is
formulated as follows:

S=y,+y+y,+¢ (D

where 0 denotes the monitored dam displacement, y» is the hydrostatic component, yr is temperature component
caused by temperature changes, yr is irreversible time component related to the concrete creep, and ¢ is residuals.
The three components of Eq. (1) are calculated as Egs. (2)-(4):

y, =a, +ah' +a,h’ +ah’ +a,h’' ()

yr=b+ b7, 3)
i=1

v, =c(1-e) )

where / represents upstream water depth (Su et al. 2015), a; (=0,1,2,3,4) and b; are unknown coefficients, 7; are
measured dam temperatures, m denotes the number of temperature measuring points, 8 = #/365, where ¢ denotes
the days from the initial monitoring date to the observation date, co and c1 are coefficients.

3 LSTM with attention mechanism for dam health monitoring

3.1 LSTM networks

The hidden layer nodes of RNN are connected to make the output of the previous hidden layer as part of input of
the next layer, therefore, RNN was used to solve time series problems. However, traditional RNN is prone to the
problem of long-term dependency during training (Ma et al. 2015). Therefore, as an extension of RNN, the
LSTM network was proposed to overcome the aforementioned problems.

The LSTM network adds memory cells and gate units, and prevents earlier information from disappearing
during processing. These properties are especially beneficial for dam displacement prediction. The LSTM cell
structure is shown in Figure 1, A denotes that three LSTM cells have same structure, and each LSTM cell is
comprised of three gate units, namely input gate i, forget gate f, and output gate oy, that collectively control the
updating and discarding of information. Calculation details of LSTM cell are shown as:

f=c(W, [ .x]+b,) (5)
iy=c(W,-[h_.x]+b) (6)
C,=tanh(W, -[h_.x,]+b,) (7)
C =f+C +i*C (8)
o,=c(W,-[h_.x,]+b,) )
h =o,*tanh(C,) (10)

where x; is the current input vector, /-1 is the output vector of preceding cell, C: is current LSTM cell state, é’, is

hidden memory cell state, Cr1 is the previous cell state. Wy, Wc, Wi, and W, are weights of the forget gate, cell
state, input gate, and output gate, respectively; by, bc, bi, and b, are bias vectors. The ¢ and tanh represent
sigmoid and tanh activation functions.
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Figure 1. LSTM cell structure.

3.2 Attention Mechanism
Attention mechanism is essentially an attention allocation algorithm that highlight important feature information
by mining data features. In recent years, neural networks combined with attention mechanism have been
extensively studied, and has been used in the prediction of traffic flow (Zheng et al. 2021) and photovoltaic
power generation (Zhou et al. 2019).

LSTM combined with attention mechanism can make the network attend to information which is more

influential in current output and filter redundant irrelevant information. The output vector H = {hl,hz,- . -,hn} of

the LSTM module is used as input to the attention mechanism for learning, and attention mechanism will
automatically calculate attention weight a; of /i, and the calculation is shown as:

¢ =tanh (W, +B,), ¢ €[-11] (11)
o, = softmax(e;) =nexpﬁ, Zn:ai =1 (12)

Z €xp (e,. ) -
i=1

where W) is weight matrix, and bx is bias. The output feature vector ¢; of attention layer is computed as a
weighted sum of /; as follows:

¢ = zn:aihi (13)
i=1

3.3 LSTM-ATT model for dam displacement prediction
In this study, considering the nonlinear characteristics of dam displacement data, LSTM-ATT network is
proposed to predict arch dam displacement. The LSTM-ATT model consists of a LSTM layer, an attention layer,
and a fully connected layer as shown in Figure 2. The procedure of the model is described as follows:

Step 1: Select temperature component, hydrostatic component, and time component as input variables, and
select horizontal displacement as output variable.

Step 2: Obtain and process data from dam safety monitoring system and make training and test data sets.

Step 3: Set model parameters, such as the number of LSTM cells, and batch size.

Step 4: Establish and train the LSTM-ATT model using training data set until the loss value converge.

Step 5: Determine whether the loss value has converged. If the loss value has met the requirement, the
process goes to Step 6, otherwise reset the parameters of Step 3.

Step 6: Evaluate the effectiveness of the model trained in the previous step by importing test sets into the
model to predict horizontal displacement.

Figure 2. Architecture of the LSTM-ATT model.
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The mean absolute error (MAE), maximum absolute error (4Emax), root mean square error (RMSE), and
determination coefficient (R?) were used as evaluation criteria to test the performance of different health
monitoring models. The evaluation criterions can be calculated as follows:

MAE =3 |3, (1)) (14)

AE, =max(yD(i)—y(i)), i=1,2,...,N (15)

RMSE = \/%i(yD (i)-»(i)) (16)

i=1

¥ (5 (i)-7)

Ri=izl (17)

i=1

where y is the monitored displacement values, y denotes average value, yp is the predicted value, and N denotes

the number of observations. The determination coefficient R? has a range of [0, 1], and the closer R* is to 1, the
better the model performance. In addition, the MAE, AEmax, and RMSE values of the optimal model should be
minimized.

4 Case study

To demonstrate predictive reliability and engineering applicability of the proposed model, a case study was
carried out on a real arch dam, and a comparison study on the performance of the traditional models was
conducted. The simulation of SR, MLR, and RBF models were performed in Matlab R2019b, and the LSTM and
LSTM-ATT models were established using the Keras framework (Gulli and Pal 2017) with version of 2.3.1.

4.1 Arch dam overview and data set

The monitoring data are taken from a 300m-level extra-high arch dam in China, with a maximum height of 285.5
meters. To assess and monitor the dam operation status, an advanced safety monitoring system was established
to monitor the water level, dam temperature, vertical and horizontal displacement.

The monitoring data of horizontal displacement of the 15th dam section were used to evaluate the
effectiveness of the proposed LSTM-ATT model, and the selected section is shown in Figure 3. The
displacements observed by measuring point PL15_1 that is on the crest of 15th dam section are studied and the
horizontal displacement curve is illustrated in Figure 4. Considering that there are too many sensors, the
measured temperatures of 15 representative sensors of 16th dam section were selected as the temperature
component. The data set is created with a total of 723 groups of measured data from July 4, 2014 to December
31, 2018. The training set contains 80% of the data set and the remaining 20% of data are taken to establish test
set.

Elevation{m} Elevationim)
i CAONORORONONORONORI NI NENE Nt RERCNONCRCRI NI R o N2 N R Es M KT RONO)
60-0' \ ’Iﬁu[:
PLL-1 PLR-1
i | Fi-l i tha PL22-1 PL27-1 :
| PLL2 Y pLs-2 PLIO-2 PL22-2 PL272 /  PLR-2
| | | w527.25m !
| IPLL-3 . PLS-3 PLIO-3 PLYT-3 PLR-3
500} -litm
PL22-3 /
| T4T0.25m
i {tPL-1 v i iz IPR-1
i | .l_”--‘“‘ PLI04 PLI74
|
400 PL10-5 4
) 1P27-1
| -PL22-5
i |
1Ps-1 i !
| >
| IPI5-1 |
IP10-1 1 P22-1

IP15-2

L 57 232.00m

Figure 3. Dam schematic diagram, and the studied section is highlighted in blue. (PL is direct pendulums; IP is inverted
pendulums).
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Figure 4. Measured horizontal displacements of PL15_1.
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4.2 Experimental results of LSTM-ATT model

According to the theory of Section 2, 20 effective factors {H, H?, H*, H*, Th, T2, T3, Ts, Ts, Ts, T7, T3, To, Tho, T,
Ti2, Ths, Tia, Tis, (1-e%)} are selected to import the model of arch dam. According to experiments, when the
coefficient ¢ in (1-¢Y) is set as 0.5, the HTT model is optimal. In this study, the model performs the best when
the number of LSTM cells is set as 30, the batch size is 30, and the epoch is 500.

The predicted data of the LSTM model and LSTM-ATT model, and measured displacement data are shown
in the Figure 5. As shown in Figure 5 (a) and (c), both LSTM and LSTM-ATT models perform well on the
training set and can simulate the dam displacement. However, the prediction effect on the test set of the model
with attention mechanism is better than that of the original model as shown in Figure 5 (b) and (d). The
prediction accuracy on the test set of both models is shown in Table 1. As shown in Table 1, MAE, RMSE and R?
of the LSTM-ATT model are better than that of the original model, which proves that the attention mechanism

improves the overall prediction performance.
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Figure 5. Performance comparison of LSTM and LSTM-ATT models: (a) LSTM performance of training set; (b) LSTM
performance of test set; (c) LSTM-ATT performance of training set; (d) LSTM-ATT performance of test set.

Table 1. Accuracy of dam health monitoring models on test set.

Algorithm MAE AFEmax RMSE R?
LSTM 0.7751 2.0365 0.9411 0.9921
LSTM-ATT 0.7063 2.1590 0.8648 0.9933

4.3 Comparative study on performance of different models
In this section, a comparative study of the performance between LSTM-ATT model and statistical models MLR
(Mata 2011) and SR (Xi et al. 2011), and machine learning model RBF (Kang et al. 2019a) was conducted. The
best spread of RBF is set as 294. The prediction curves of different monitoring models for the test set are shown
in Figure 6. As shown in Figure 6, all models for dam health monitoring can predict the development trend of
dam displacement. The predicted curve of the proposed LSTM-ATT model is closest to the measured value
curve.

The performance evaluation results of different models are listed in Table 2. As shown in Table 2, it is
obvious that LSTM-ATT has the smallest MAE, AEmax, RMSE, and largest R? on the test set, which demonstrates
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that LSTM-ATT model performs better than MLR, SR, and RBF models. Therefore, the proposed LSTM-ATT is
more efficient than RBF, MLR, and SR to predict arch dam displacement for dam health monitoring.
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Figure 6. Comparison of prediction performance for different models: (a) RBF and LSTM-ATT models; (b) MLR and
LSTM-ATT models; (c) SR and LSTM-ATT models.

Table 2. Comparison of prediction performance on the data set for RBF, MLR, SR, and LSTM-ATT models.

Algorithm Training Test
MAE AFEmax RMSE R? MAE AFEmax RMSE R?
RBF 0.4489 27531  0.5808 0.9986 1.2273 2.8418 1.3851 0.9828
MLR 0.7351  3.6120  0.9587 0.9961 1.3523 3.4147 1.6097 0.9767
SR 0.7421  3.5483  0.9626 0.9961 1.3408 3.3352 1.5925 0.9772
LSTM-ATT  0.7459  3.7687  0.9650 0.9960 0.7063 2.1590  0.8648 0.9933

5 Conclusion

In this study, a dam health monitoring model based on deep learning algorithm LSTM network combined with
attention mechanism to predict dam behavior was proposed. The LSTM network was used to mine hidden rules
in time series data. Attention mechanism was adopted to assign weights to different variables. To verify the
effect of the proposed LSTM-ATT model, a 300m-level extra-high arch dam was taken as an example. Measured
temperatures of this arch dam are selected as temperature component of HTT mathematic theory. Numerical
experiments show that the LSTM-ATT network can predict the horizontal displacement of the arch dam
effectively, and the performance is better than that of MLR, SR, RBF models and ordinary LSTM network.
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