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Abstract: When the construction encounters a different geological condition from the design, the altered support patterns of 
China's NATM tunnel are designed by experienced experts based on the comprehensive evaluation of advanced geology 
forecast and their observation of the tunnel face. However, the current decision methods require expertise, and there are often 
subjective discrepancies. This study proposes a data-driven method for the support pattern decision. The inputs are thirteen 
variables describing the tunnel faces and the support pattern of the corresponding tunnel face recorded on the construction 
site are the outputs. We selected five classic machine learning classification algorithms (support vector machine(SVM), 
random forest, logistic regression, Gaussian process, and Naïve Bayes) through trial calculations and the optimal parameters
of the models were obtained by using the grid search cross-validation technique. The results show that the voting classifier 
constructed with these five algorithms has good accuracy in the prediction of the support patterns. The feature importance 
rank of input variables is determined by sensitivity analysis, which enhances our understanding of the relationship between 
surrounding rock and support.
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1 Introduction

With the rapid growth of traffic demand in China, the construction of mountain tunnels will continue to be an 
important research topic for Chinese civil builders and scholars. Among these constructions, the drilling and 
blasting method is still the most widely used, most important, and most commonly used mountain tunnel 
excavation method in China.

In the initial support design of drilling and blasting tunnels, the engineering analogy method is mainly used 
at present. When encountering dangerous sections, the numerical simulation will be used as an auxiliary 
decision-making method. In the actual tunnel excavation, due to the uncertainty of the surrounding rock, it is 
often the case that the support method given by the design does not match the conditions of the surrounding rock.
Due to the convergent deformation characteristics of the surrounding rock, the construction of the initial support 
cannot be delayed. Based on this situation, we need a way to make support decisions as quickly as possible based 
on the surrounding rock conditions of the tunnel face on-site, while ensuring safety.

Before the advent of “big data” and advances in machine learning, it was appropriate to baserock 
engineering design primarily on empirical data and expert knowledge because the geology, discontinuity, and in 
situ stress data available for projects were generally sparse (Morgenroth 2021).Now, increasing amounts of some 
kinds of data such as Rock structure category, Groundwater area, Trace maps, are being collected relatively 
inexpensively by computer vision and deep learning(Chen et al. 2021).This is an opportunity to integrate 
machine learning into existing rock tunnel construction to evaluate rock data more effectively and extract value 
(or information) from the data to the maximum.

During the tunnel excavation, if support changes are required, the existing method is for experienced 
engineers to make decisions based on advanced drilling data and tunnel face conditions, and choose one of 
several designed support modes. This method is highly subjective and is largely limited by the experience level 
of the engineer himself, and it is easy to get a safer solution.

Aiming at the existing shortcomings of drilling and blasting tunnel construction, this paper constructs an 
initial support pattern prediction model based on the face data extracted by machine learning algorithms and 
computer vision. The database comes from published papers (Zhou 2021). Based on the statistics obtained from 

565



566 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

the Mengzi-Pingbian Highway Tunnel(MPHT) in Yunnan Province, China, five support patterns (i.e.,S4b, S4c, 
S5a, S5b, and S5c) were labeled based on the designing documents. We corresponded the 133 groups of tunnel 
faces in the database with the support patterns by consulting the construction record files. The input data of the 
model is composed of thirteen variables in the database, and the output is the support type. We processed the 
input data through a variety of data preprocessing methods, and then initially selected four machine learning 
models that performed well on the data. They are logistic regression(LR), random forest(RF), support vector 
machine(SVM), and AdaBoost Classifier(ABC). After optimizing the grid search parameters of these four 
models, the ABC with the best effect is selected.

This new method can help make quick decisions on-site, avoiding dangers such as collapse due to delayed 
timing, and also avoiding waste caused by improper support patterns.

2 Data pre-processing and model selection

In the design stage of the drill and blast tunnel, the designer will first preset several support patterns based on the 
geological survey data. Then choose different support modes for different sections. They will name the different 
support patterns S3, S4a, S4b, S5a, S5b, etc. The number represents the level of the surrounding rock, and the 
lowercase letters a, b, and c represent the different support patterns under the same level of the surrounding rock, 
and the support intensity increases sequentially. Figure 1shows the MPHT S5a Type Lining Design. Design 
parameters include bolt type, bolt arrangement, bolt length, shotcrete thickness, steel frame layout, etc.

Figure 1. Mengzi-Pingbian Tunnel S5a Type Lining Design

Table 1reports the average, maximum as well as minimum values of the model outputs and inputs along 
with various other details. Among the thirteen features, ten are numerical features, and three are categorical 
features. Different features have different value ranges, and may even have different units. To obtain accurate 
classification results and ensure the function of each feature, the numerical features are standardized and the 
categorical features are numbered. This treatment can reduce the influence of model scale and dimension on the 
model. The number of each support pattern (S4b, S4c,S5a,S5b,S5c) in the sample is 30, 27, 20, 26, 30.Therefore, 
this data set does not have the problem of uneven samples.
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Table 1.Summary of variable definitions and distribution
Variables Symbol Unit Mean Std Min Median Max

Input

Rock structure category RSC - 2.489 1.229 1 2 5

Groundwater category GWC - 2.406 1.200 1 2 5

Groundwater area GWA m2 8.493 7.826 0 7.824 26.593

Weak interlayer area WIA m2 3.521 2.752 0 3.051 10.330

Trace length (average) TLa m 0.503 0.230 0.022 0.522 1.122

Trace length (maximum) TLmax m 0.922 0.258 0.283 0.928 1.637

Trace density TD - 40.309 23.346 1.046 36.605 103.540

Trace intensity TI - 7.801 6.383 0 6.275 25.101

Primary trace angle PTA ° 97.705 50.636 3.378 113.309 186.849

Tunnel depth H m 221.624 87.352 68 217 370

Uniaxial compressive strength UCS MPa 20.084 12.247 3.55 17.50 54.89

Tunnel strike TS ° 61.481 18.827 14.1 63.6 89.9

Weathering degree WD - 3.150 0.996 1 3 5

Output

Support pattern SP - 2.992 1.490 1 3 5
Note:RSC categories: 1- block structure, 2- layered structure, 3- mosaic structure, 4- fragmentation structure, 5- granular 
structure; GWC categories: 1. dry state, 2. wet state, 3. dripping state, 4. flowing state, 5. gushing state; WD categories: 1. 
unweathered, 2. slightly weathered, 3. moderately weathered, 4. highly weathered, 5. decomposed. SP categories: 1-S4b, 2-
S4c, 3-S5a, 4-S5b, 5-S5c.

We selected four more promising machine learning algorithms from eleven algorithms based on the 
accuracy of the model before tuning the parameters, namely: logistic regression (LR), random forest (RF), 
support vector machine (SVM), and AdaBoost. The dataset was randomly shuffled, of which 70% data were 
used as training and 30% for testing.Figure 2shows the accuracy of the 10-fold cross-validation of the eleven 
algorithms on the training set.

Figure 2.The accuracy of eleven algorithms
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3 Support patterns prediction model

Based on the Scikit-learn machine learning basic algorithm package, this article uses the four supervised learning 
algorithms selected above to learn from the data training set, including conventional algorithms (LR and SVM) 
and integrated algorithms (RF and AdaBoost).In the process of model training, five-fold grid search cross-
validation (GridSearchCV) is used to optimize the parameters of the model to obtain the optimal parameters 
when the accuracy of the algorithm is the highest. In the process of grid search, a series of prior candidate values 
of related parameters of the algorithm are first given, and all parameter value combinations are tried through 
loop traversal, and then the parameter value combinations that make the algorithm perform optimally are
obtained. Table 2 presents the optimal parameters of each model through the grid search.

Table 2.Grid search and optimal parameters of four different models
Model Parameter Optional value Optimal parameter Time cost(s)
LR Penalty ['l1','l2'] ‘l1’ 10.752

solver ['newton-cg', 'lbfgs', 'liblinear',  'sag', 'saga'] ‘saga’
Multi_class ['ovr','multinomial'] ‘multinomial

’
C [0.01,0.05,0.1,0.25,0.5,0.75,1,10] 0.5

RF n estimators [0,200] 40 6424.713
max depth [0,20] 15
criterion ‘gini’ or ‘entropy’ ‘gini’

SVM Kernel ‘linear’, ‘poly’, ‘rbf’,‘sigmoid’ ‘linear’ 7.873
C [0.05, 0.1, 0.25, 0.5, 0.75, 1.0] 1.0

AdaBoost n_estimators range(1,100,5) 6
algorit

hm
['SAMME','SAMME.R'] 'SAMME.R' 186.455

learning_rate np.arange(0.01,1,0.1) 0.71

Table 3shows the performances of the LR, RF, SVM and the AdaBoost methods on the training and test set. 
It can be seen that the AdaBoost has the best performance, but other methods only perform slightly worse. The 
average Precision, Recall and F-measure of all these methods on the training set are approximately 100%, while 
the average Precision, Recall and F-measure of these methods on the labeled test set are all above 90%.In terms 
of model calculation time, only the random forest algorithm has a slightly longer calculation time, and the other 
algorithms are all around 0.01 seconds.

Table 3.Performances of the proposed method and other supervised learning-based methods
Model Training set (%) Test set (%) Time(s)

P R F1 P R F1
LR 99.00 99.00 98.97 90.56 91.14 90.61 0.012
RF 100.00 100.00 100.00 95.28 96.00 90.61 0.039
SVM 97.89 97.67 97.71 94.00 94.00 92.94 0.013
ABC 100.00 100.00 100.00 100.00 100.00 100.00 0.017

Figure 3shows the confusion matrixes of all four methods on the test set. The samples on the sub-diagonal 
of the matrix are correctly predicted. The bearing capacity of the surrounding rock above the sub-diagonal line is 
overestimated, and the model matches them with a weaker support pattern, which may lead to collapse; the 
bearing capacity of the surrounding rock below the sub-diagonal line is underestimated, The model matches 
them with a stronger support model, which will cause economic waste.
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Figure 3. Confusion matrixes of four methods on the test set

4 Method discussion

Feature importance reflects the values of specific parameters in classification prediction. Therefore, it is 
necessary to calculate the importance of each feature to verify the rationality of the selected model input 
parameter.

Figure 4. Importance scores of input features
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In this study, the feature importance was evaluated by different method for different algorithms.
For the random forest and AdaBoost model, the feature importance was evaluated by comparing the Gini index. 
The Gini index reflects the probability that two samples randomly selected from a dataset have inconsistent class 
labels, which can be calculated as

= 1  
2

=1 (1)
where is the number of support pattern classes, and is the probabilitythat the sample belongs to the kth
support pattern class.

For the SVM and LR model, the feature importance was evaluated by the weights assigned to the features. 
In order to unify the weight and the feature importance, the weight needs to be scaled to between 0 and 1.

Figure 4shows the importance scores of input features. For each model, the sum of the scores of the thirteen 
features is 1. Among these parameters, the tunnel depth (H) had the highest importance score followed by the 
primary trace angle (PTA), and other influencing factors are less important than the previous two.

5 Conclusions

In this study, a machine learning based support pattern prediction model was proposed. The tunnel face – support 
pattern database employed for the method was collected from the Mengping tunnel in Yunnan and 13 tunnel face 
parameters (RSC, GWC, WD, GWA, WIA, Tla, Tlmax, TD, Tl, PTA, H, UCS, TS) were used as the input 
features of the method. Overall, according to our research, the following conclusions can be drawn:

(1) In terms of prediction performance, the support pattern prediction model based on AdaBoost is 
significantly better than other mechine learning models. The Acc and F1 values of the AdaBoost model are 1.00 
and 1.00, higher than those of the LR, RF, SVM.

(2) The feature importance analysis shows that the contribution of each input features is different. The 
importance scores of input features show that, the tunnel depth (H) had the highest importance score followed by 
the primary trace angle (PTA) , and other influencing factors are less important than the previous two.
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