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Abstract: Rockburst is a key source of risk in engineering construction of deep-buried tunnels, which is induced by high in-
situ stress and strong dynamic disturbance. Due to the highly complex relation between rockburst and the impact factors,
traditional mechanism-based prediction methods have some limitations. Extreme gradient boosting (XGBoost) is herein
introduced to predict the rockburst problem, where six hyperparameters are optimized by Bayesian optimization algorithms.
This study collected 384 data sets based on real rockburst cases. Rockburst prediction can be divided into four categories: no
rockburst, light rockburst, moderate rockburst and high rockburst. The occurrence probability of these four categories is
different in actual engineering, which leads to imbalanced samples of the four rockburst categories. The synthetic minority
oversampling technique (SMOTE) algorithm is utilized to process the collected data sets as the sample imbalance can affect
the prediction accuracy of XGBoost model. The SMOTE-Bayesian-XGBoost model proposed in this study does not rely on
the internal mechanism of rockburst. It provides a simple but effective model for rockburst prediction, which is of practical
significance to reduce the risk during deep-buried tunnel construction.

Keywords: Rockburst prediction; extreme gradient boosting; Bayesian optimization algorithms; synthetic minority
oversampling technique.

1 Introduction

In recent years, the continuous improvement of underground engineering facilities has brought many risks to
deep engineering excavation, especially rockburst disasters. The mechanism of rockburst is very complicated,
mainly due to the formation of high-stress concentration areas in deep-buried areas or the large energy generated
by rock mass during failure (Zhang 2022). Therefore, the timely prediction of rockburst is an urgent problem to
be solved in underground engineering.

Many machine learning methods have been applied to rockburst prediction. Ahmad et al. (2021) compared
the application of J48 algorithm and random forest algorithm in rockburst prediction, and the results show that
the random forest method has higher accuracy. Based on analytic hierarchy process (AHP), Yin et al. (2021)
proposed a new tree-based algorithm to predict the occurrence of rockburst. Firstly, t-SNE and clustering
algorithm were used to reduce and cluster the database, then grouping rules established previously were used to
predict the rockburst. Wojtecki et al. (2021) used a wide range of machine learning methods to predict rockburst
in a deep coal mine in Poland, which proves the effectiveness of machine learning methods in rockburst
prediction. Zhang et al. (2021) used the risk synthesis index method to evaluate the rockburst in the deep coal
seam group. Liang et al. (2019) introduced the multi-attributive border approximation area comparison
(MABAC) method to rockburst risk assessment and obtained the specific rockburst risk level in a fuzzy
environment. However, these methods have certain limitations: (1) Sample disequilibrium; the amount of data
for each type of rockburst is uneven in the dataset is unbalanced, which will affect the prediction results of
rockburst. (2) Hyperparametric optimization; most of the existing methods are based on search grid or local
optimization, which is not only computationally expensive but also prone to local optimization.

In this study, a Bayesian-XGBoost rockburst prediction model based on oversampling technique is
proposed. SMOTE algorithm solves the imbalance of samples in each category in rockburst prediction. The
Bayesian method is used to optimize parameters, which can optimize the next iteration according to the previous
calculation results and greatly improve the optimization process. The main work of this study is as follows:
Firstly, the rockburst database is established by collecting data from literature. Then, the proposed model is
trained based on the collected database. Finally, the validity of the proposed model is verified based on an actual
engineering case.
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2 Methods
2.1 Machine learning algorithms

2.1.1 EXtreme Gradient Boosting (XGBoost)
XGBoost is a tree-based integration algorithm. The main idea is to combine multiple classification tree models to
build a model with higher accuracy.

1. The basic model of XGBoost is shown below:

P =ka(x,-),fk eF (1)

where J, represents the predicted results of sample x;, K is the number of trees. i =1,2,3.....,n, n is the number
of the samples. F' is the set of trees and fx is one of the functions.

2. The loss function fo; can be expressed as:

LO)=16,7) =36, -0 n .
. - = Ly = LO+QO) = X 1(5,,7)+ 2 Q%) )
Q(0) =Y 0(/,) - -

where L(0) represents the error term, y; represents the true value. ()(@)represents the regularization item, Q(f,)

represents the regularization term of the kth tree.
Since XGBoost model is trained by addition, the loss function will change every time a new function f (x;)
is added, which can be expressed as:
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where f; (xi) represents the function added at the th time; C is the constant term. 7 represents the number of leaf
nodes; w represents the fraction of each leaf node. y and 4 control the number and fraction of leaf nodes,
respectively.

Taylor expansion was performed on Eq. (3) by combining Eq. (4):

, 1 1L
D {l(yi,yf ”)+g,~f,(xi)+Ehiﬁz(xi)}+7T+5§ o
=

i=1

r Q)
- KZgi]a)/ +%(Zh; +/1]a)f]+yT

where gi and /; represent the first partial derivatives and second partial derivatives, respectively.

Eq. (6) and Eq. (7) are used to simplify Eq. (5), and the simplified formula is shown in Eq. (8):
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where /, = {i |q(x1.) =7 }, q(x) represents the leaf node of sample x, /;represents the set of samples of every leaf in
the jth tree.

3. To get the optimal objective function, take the partial derivative of w; with respect to Eq. (8), the optimal
objective function can be solved:
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2.1.2  Other machine learning algorithms

In order to compare with the proposed model, six algorithms are introduced in this study, including support
vector machine classification (SVC); decision tree (DT); random forests (RF); Adaptive boosting (Adaboost); K-
Nearest-Neighbors (KNN); Multilayer perceptron (MLP).

2.2 Oversampling technique (SMOTE)

In classification prediction problems, the number of categories per category may be unbalanced due to limited
data sets. In the process of prediction, this may lead to the excessive prediction of the model for the categories
with a large amount of data, and the prediction results will have a large deviation.

Machine learning algorithms usually take the maximum accuracy as the objective function, which will lead
to the algorithm paying too much attention to the majority of samples. Therefore, the predictive performance of
the algorithm will decrease for a few samples. In order to solve this problem, SMOTE method is introduced to
increase the minority sample. The specific steps of SMOTE are as follows:

(1) For minority classes, the Euclidean distance is used to calculate the distance from each sample to all
samples in the minority sample set.

(2) According to the imbalance ratio of each category, set a sampling ratio, and multiple samples are
randomly selected from the & nearest neighbor of sample x of each minority category, assuming that the selected
nearest neighbor is xx.

(3) For the selected neighbor x», a new sample is constructed according to the following formula:

X, =X, +rand(0,1)x (X, —x,) (11)

new

where xnew represents the newly generated sample of the minority class; x» and X, represent the minority class

sample and the selected nearest neighbor points, respectively; rand (0,1) represents random numbers between
(0,1).

2.3 Bayesian optimization

In order to speed up the training speed of the neural network and improve the computational efficiency, it is
necessary to optimize the hyperparameters of the neural network. The traditional parameter tuning methods
include grid search and random search, but these two methods have a large amount of computation and are easy
to fall into the local optimal situation. In the process of searching the optimal parameters, these two methods will
not be adjusted based on the past evaluation results, which has certain limitations. In order to speed up the
process of parameter optimization, a large number of parameter optimization methods have been developed in
recent years. The three most common methods are Bayesian optimization; particle swarm optimization; genetic
algorithm.

In this study, the Bayesian optimization method is used to optimize parameters. The main principle of the
Bayesian algorithm is to determine the optimal hyperparameter of the model through global optimization. The
Bayesian optimization algorithm can combine the previous results to optimize the next calculation. The
algorithm core is the probability proxy model and the acquisition function. In this study, the common Gaussian
model and the improved probability acquisition method are adopted.

3 Construction of SMOTE-Bayesian-XGBoost Model for Rockburst Prediction
3.1 Database description

3.1.1 Database establishment

A total of 384 sets of rockburst data are collected in this study. They are mainly derived from Zhou et al. (2016);
Xue et al. (2019); Dong et al. (2013); Wang et al. (2013); Zhou et al. (2013). According to the intensity of
rockburst, it can be divided into four grades: no rockburst damage (0), slight rockburst (1), medium rockburst (2)
and strong rockburst (3). Six indexes are selected in this project to evaluate the rockburst level: maximum
tangential stress (MTS); stress concentration factor: ratio of maximum tangential stress to uniaxial compressive
strength (SCF); brittleness coefficient: ratio of uniaxial compressive strength to uniaxial tensile strength (BC);
uniaxial compressive strength (UCS); uniaxial tensile strength (UTS), elastic energy index (Wer).
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3.1.2  Database processing

In order to ensure the prediction effect of the model, it is necessary to preprocess the data before training. In the
collected dataset, the distribution of the four types of rockburst data is uneven. The four rockburst categories are
no rockburst (71 cases), light rockburst samples (114 cases), moderate rockburst (137 cases) and high rockburst
(62 cases).

It can be seen that the data amount of slight rockburst and moderate rockburst accounts for a large
proportion. To solve this problem, random sampling technique is used to increase the frequency of a few types of
samples, so that the sampling frequency of different types of rockburst cases can reach a balance. After data
processing, the data amount of each sample reached 137 cases, a total of 548 groups.

3.2 Model training

In order to avoid over-fitting and increase the generalization effect of the model, the 10-fold cross validation
method is adopted here. Figure 1 shows the principle of 10-fold cross validation. The final calculation result is
the average value of 10 times, and the core in the figure refers to the accuracy of prediction.

In this study, accuracy rate is used to represent the prediction effect of the model, and accuracy rate can be
defined as:
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Figure 1. Schematic diagram of cross validation.

In order to compare with the prediction effect of XGBoost, six algorithms were selected to train the dataset.
Table 1 indicates the predicted results under XGBoost model and the other six algorithms. Figure 2 shows the
rockburst prediction results of 7 algorithms in the original data and oversampling datasets more intuitively.

Table 1. The rockburst prediction accuracy based on raw data and oversampled data.
Accuracy rate (%)

Accuracy rate (%)

Algorithm (Raw data) (Oversampled data)
XGBoost 74.15 82.70
Adaboost 70.23 78.70
K-NN 61.34 76.14
DT 63.94 73.02
RF 73.08 82.15
SvVC 63.18 76.32
MLP 64.27 75.76
85 ¢ Raw data
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Figure 2. Rockburst accuracy of various algorithms based on raw data and oversampled data.
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The following phenomena are shown in Figure 2 and Table 1: (1) XGBoost model has the highest
prediction accuracy, followed by Adaboost and RF. The prediction accuracy of these three models is more than
70% in the original data set and about 80% after over-sampling. This is because these three algorithms are
integrated classification algorithms, while the remaining four algorithms are single classification methods. (2)
After oversampling the data set, the accuracy of each model increases greatly. This proves that it is necessary to
carry out sample equalization on the data set.

In order to improve the prediction efficiency of XGBoost, this study uses Bayesian optimization algorithm
to optimize the hyperparameters of XGBoost model. For the two penalty coefficients L1 and L2 of XGBoost
model, the default value 0 is generally adopted and these two parameters are not optimized here. Table 2 shows
the optimal values for the remaining six parameters. After hyperparametric optimization of XGBoost, the
accuracy of prediction is improved to 84.14%. It proves that Bayesian optimization parameters can improve the
accuracy of the model.

Table 2. XGBoost model parameters optimization.

Parameter Meaning Optimal value  Accuracy (%)
n_estimator number of classifiers 145
eta shrinkage step 0.24
max_depth maximum depth of a tree 5 ]4.14
min_child weight sum of sample weights of minimum leaf nodes 5.46 ’
max_leaf nodes maximum incremental step for each tree's weight estimation 3
subsample random sampling ratio 0.65

4 Application in The Practical Engineering of Models

In order to verify the validity of the proposed model, part of the diversion tunnel section of the riverside
hydropower station is selected as a validation case. The diversion tunnel is located in the area of medium and
high in-situ stress, which is prone to rockburst and brings serious harm. The 10 groups of data measured on-site
(Xue et al. 2020) are shown in Table 3. Also, Table 3 indicates the predicted results based on the Bayesian-
XGBoost model. It can be seen that the rockburst level is correctly predicted for each group of samples which
can verify the validity of the model.

Table 3. Practical engineering applications of the SMOTE-Bayesian-XGBoost.

No. MTS UCsS UTS SCF BC W  Actual level  Predicted level
1 91.43 157.63 11.96 0.58 13.18 6.27 3 3
2 19.14 106.31 2.76 0.18 38.52 2.03 0 0
3 58.05 147.85 6.98 0.39 21.18 3.62 2 2
4 34.89 151.7 7.47 0.23 20.31 3.17 1 1
5 51.5 132.05 6.33 0.39 20.86 4.63 2 2
6 35.82 127.93 443 0.28 28.9 3.67 1 1
7 9.74 88.51 2.16 0.11 40.98 1.77 0 0
8 33.94 117.48 4.23 0.29 27.77 2.37 1 1
9 18.32 96.41 2.01 0.19 47.93 1.87 0 0
10 110.35 167.19 12.67 0.66 13.2 6.83 3 3

Based on the XGBoost algorithm, Figure 3 shows the importance of each input parameter to the rockburst
level. It can be seen that MTS and UCS have the greatest influence on the rockburst level. Compare the first set
of data with the second set in Table 3, MTS (No.1) is much larger than MTS (No.2) and UCS (No.1) is also
larger than UCS (No.2). The results indicate that MTS and UCS may have a positive correlation between the
intensity of rockburst. We can pay more attention to these two parameters of rock mass in practical engineering,
which is of great practical significance for timely warning of rockburst.

5 Conclusions

A new rockburst prediction model based on SMOTE and Baysian-XGBoost is proposed in this study. In order to
solve the problem of class imbalance in the dataset, SMOTE algorithm is introduced to synthesize samples of the
minority class. The hyperparameters of XGBoost model are optimized by Bayesian optimization algorithm. In
order to compare the effect of the proposed model, six other machine learning algorithms are also introduced for
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comparison. The new model is trained based on the dataset collected, and the correctness of the proposed model
is verified by an actual project.

In this study, the SMOTE has been developed to deal with the classification of imbalanced datasets, the
amount of data for each category can be consistent by resampling the instances of the minority class. It avoids
the problem of inaccurate prediction caused by unbalanced dataset samples. The results show that the accuracy
of the proposed model is greatly improved after the dataset is processed.

There are many hyperparameters in XGBoost model, and the selection of hyperparameters has a significant
influence on the prediction accuracy of the model. In this study, the Bayesian algorithm is introduced to optimize
6 important parameters in XGBoost, and the optimal values of 6 parameters are obtained. The prediction
accuracy of XGBoost model after Bayesian optimization is improved from 82.70% to 84.14%, which proves that
Bayesian optimization can improve the model prediction efficiency to a certain extent.

In the case study, the proposed SMOTE-Bayesian-XGBoost model is used to predict a real engineering
example. Ten groups of rockburst data are selected and the prediction results of the proposed model are in good
agreement with the actual results. The model proposed in this study extends the application of machine learning
in rockburst prediction and can provide some guidance for practical engineering.

1395

1441

0 200 400 600 800 1000 1200 1400 1600
Significance

Figure 3. Significance ranking of influential factors of rockburst.
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