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Abstract: Recycling waste materials such as waste tires in geotechnical projects can greatly contribute to environmental issues.
An important feature of sand-rubber mixtures is their shear strength, which depends on many factors such as the size distribution
of sand and rubber, density of mixtures etc. Due to the multiplicity of these effective factors, this paper evaluated the
performance of two Artificial intelligence (AI) methods, namely a support vector machine (SVM) and a classification and
regression tree (CART) algorithm, to predict the shear strength of sand-rubber mixtures. For this purpose, a database with 101
datasets including nine inputs and one output, i.e., the ratio of shear strength to normal stress, was used. The inputs parameters
included dry density, mean particle size (Ds), coefficient of curvature (Cc) and uniformity coefficient (C,) of sand, normal
stress, rubber percentage, and Dso, C. and C, of rubber. The results of the best SVM and CART models were also compared
with the result of multiple linear regression (MLR) method. The results show that R? for the test database was 0.90, 0.90 and
0.55 for the CART, SVM and MLR models, respectively. In addition, the MAE of CART, SVM and MLR methods were 0.013,
0.013 and 0.041, respectively. Therefore, according to the results, both Al methods have a great performance to predict the
shear strength of sand-rubber mixtures.
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1 Introduction

Every year, a large volume of scrap tires ends up in landfills (Sahebzadeh et al., 2017, Al-Fakih et al. 2020). In
addition to adverse effects of waste tires on the environment, they can increase the fire risks and damage the health
of creatures. Therefore, recycling tire waste is one of the important topics in geotechnical engineering research.
Scrap tires have engineering properties such as low specific gravity, high durability and flexibility (Al-Fakih et al.
2020) that can be useful in geotechnical engineering applications such as lightweight fillers (Kong et al. 2018),
highway construction (Siddique and Naik 2004, Baghbani et al., 2022a), soil reinforcement (Zhang et al. 2020)
and soil retaining walls (Reddy and Krishna 2015). Studies (Ahmed 1993; Zornberg et al. 2004; Yoon et al. 2008)
have shown that there are several factors affecting the shear strength of gravel- or sand-rubber mixture. For
example, in one of the first studies on sand-tire chip mixtures, Ahmed (1993) showed that the percentage of rubber
chips, sample compaction method and confinement pressure in the triaxial test were the effective factors on the
shear behavior of sand-rubber mixtures (Ahmed 1993). In another study, Zornberg et al. (2004) used triaxial
experiments on sand with rectangular tire chips and showed that the best shear performance was related to a
mixture of sand-rubber with 35% by weight of tire chips (Zornberg et al. 2004). Yoon et al. (2008) showed that
by increasing the percentage of granulated rubber with diameter less than 20 mm, the California bearing ratio
(CBR) decreased (Yoon et al. 2008). Studies (Ghazavi 2004; Anvari et al. 2017; Rouhanifar et al. 2021) also
showed that with increasing the percentage of rubber in the rubber-sand mixture, the shear strength of the mixture
increased.

Due to the complexity of effective factors on the shear strength of sand-rubber mixture, including the size of
sands and rubber, the percentage of rubber, normal stress, dry density, etc., there is still no model to predict
maximum shear strength of sand-rubber mixtures based on all effective parameters. One of the methods that has
been well used in various fields of geotechnical engineering and has shown acceptable results, is the artificial
intelligence (AI) methods (Baghbani et al. 2022b). However, there is no published study on the application of Al
methods to predict maximum shear strength of sand-rubber mixtures. In this paper, for the first time, using a
database (including 101 datasets) from direct shear tests, two Al methods including classification and regression
tree (CART) Algorithm and support vector machine (SVM) were modelled to evaluate the effects of nine effective
parameters on the shear strength of sand-rubber mixtures parameter.
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2  Simulation Model

2.1 Experimental Condition and Parameter Selection

The database was collected from two publications (Anvari et al. 2017; Rouhanifar et al. 2021). In these two papers,
as shown in Figure 1, different rubbers and sands with different distributions were considered. For sample
preparation, mixtures with different weight percentages of rubber were prepared. Then, using wet tamping method
(Ladd 1974), the samples were compacted in three layers to get the desired density. Finally, the direct shear tests

were conducted on samples with dimensions of 10*10 cm and height of 3.5 cm with different normal stresses. The
displacement rate of the direct shear test was 0.5 mm/min.
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Figure 1. The grain size distribution curves for used sands and rubbers.

2.2 Database Collection and processing

To use different methods of Al, a database with a large number of datasets is needed. In total, the obtained database
from direct shear experiments had nine inputs including relative median diameter (Dso), coefficient of uniformity
(Cu), coefficient of curvature (Cc) of both sand and rubber, the percentage of rubber, normal stress, mixture dry

density, and one output, i.e., the ratio of maximum shear strength to normal stress in direct shear tests. A summary
of the database is shown in Figure 2.
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Figure 2. The distribution of collected database.

To increase the accuracy of modelling, the collected database was normalized by Equation 1. Normalization

caused that in Al methods, all the parameters involved in the model were treated equally, and the error due to the
accuracy of different parameters was reduced.

Xnormal= (X - Xmin) / (Xmax - Xmin) (1)
where Xnormal, X, Xmin and Xmax are the normalized, actual, minimum, and maximum parameter value, respectively.

In Al models, the database was divided randomly into two databases: training (including 80% of the total database)
and testing (including 20% of the total database) database. Tables 1 and 2 show the statistical information of these

two databases. As can be seen, the important statistical information, including minimum, maximum, mean,
standard standards, of both databases were almost same.



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

Table 1. Statistical information of training database.

Variable Observations Minimum Maximum Mean Std. deviation
Ratio (Shear/Normal) 81 0.595 0.833 0.701 0.046
D50-Sand 81 0.270 0.730 0.650 0.175
Cu-sand 81 1.260 1.450 1.293 0.072
Cc-sand 81 0.950 1.080 0.972 0.049
D50-Rubber 81 0.190 2.920 1.640 1.213
Cu-Rubber 81 1.260 1.800 1.353 0.205
Cc-Rubber 81 0.710 0.950 0.909 0.091
Rubber (%) 81 0.000 50.000 20.062 15.380
Dry density 81 1.000 1.610 1.270 0.154
Normal stress (kPa) 81 34.500 150.000 96.457 41.028

Table 2. Statistical information of testing database.

Variable Observations Minimum Maximum Mean Std. deviation
Ratio (Shear/Normal) 20 0.644 0.835 0.714 0.050
D50-Sand 20 0.270 0.730 0.592 0.216
Cu-sand 20 1.260 1.450 1.317 0.089
Cc-sand 20 0.950 1.080 0.989 0.061
D50-Rubber 20 0.190 2.920 1.242 1.145
Cu-Rubber 20 1.260 1.800 1.422 0.254
Cc-Rubber 20 0.710 0.950 0.878 0.113
Rubber (%) 20 0.000 50.000 19.500 14.409
Dry density 20 1.000 1.460 1.288 0.127
Normal stress (kPa) 20 34.500 150.000 81.350 38.055

2.3 Multiple linear regression (MLR)

Multiple linear regression (MLR) is a statistical method for predicting an output variable based on several
independent input variables. This method is a developed method from linear regression (OLS) method that has
only one input variable and one output variable (see Figure 3).

Linear regression
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Figure 3. Multiple linear regression and linear regression.

In MLR, the relationship between input parameters and output parameter is considered linearly. Also in this
method, the data is used in a normalized way.

y=PBo+ B Xy + o+ BrXp & 2

Where y is the predicted value, o is y-intercept when all other parameters are equal to 0, X and X, are first and
last independent variables, p1, Bn are regression coefficient of first and last independent variables, and € is model
error.

In MLR, to achieve the best line, regression coefficients are selected so that the model has the least error. In
this study, before modelling Al methods, MLR as a one of the simplest regression methods, was used to check the
accuracy of the simple linear regression.

To determine the accuracy of the proposed models, the coefficient of determination (R?), and the mean
absolute error (MAE) between the predicted and measured values have been determined. Equations 2 and 3 show
the definition of the coefficient of determination (R?), and the mean of the absolute error (MAE).

Z e\"( XW) - Z «-‘( X Xp) :
PINEAE 3)

2 |(x.-x)]

MAE = - B (4)

R’=
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Where Xm, Xp, Xy, , X, are actual values, predicted values, the average of actual values and the average of

predicted values, respectively and N is the number of datasets. The best model is a model that has the coefficient
of determination (R?) of 1 and mean of the absolute error (MAE) equal 0.

2.4 Classification and Regression Tree Algorithm (CART)

Classification and Regression Tree Algorithm (CART) is one of the well-known methods of artificial intelligence
(AI) which was first introduced by Breiman (1996). CART has the ability to find the relationship between input
and output variables without any presuppositions and for various purposes, such as prediction (i.e., regression tree)
and classification (i.e., classification tree). Classification trees are generally used for continuous variables in order
to find the group of the target variable that is most likely to fall. Regression trees are also used to predict continuous
variables. This method is used to construct a decision tree based on input variables using classification and
regression. The result of CART is a tree-like structure with different nodes and branches. One of the advantages
of the CART method compared to other Al methods is that it is a white box method, and its final tree structure can
be used easily to predict output parameters based on the input variables. This is while most Al methods, such as
artificial neural network (ANN), are known as a black box. Figure 4a shows the typical tree structure of a CART
model, which is comprised of nodes (i.e., root node, internal node, and leaf node), rules, and branches. In the
CART algorithm, each node is divided into two sub-nodes with left and right branches.

2.6 Support vector machine (SVM)

The support vector machine (SVM) method is one of the Al methods used for regression and classification. In this
method, which was introduced by Boser et al. (1992), a hyperplane is used to separate the data input nodes using
mathematical equations. Figure 4b shows a typical diagram of the SVM method. The performance of this method
is determined by the location of the hyperplane. A hyperplane works best when it achieves the largest positive
vectors and separates the most data nodes.

Leaf

The depth of tree

(a) Note: a, b and c are the input parameters of database (b)

Figure 4. The typical structure of a (a) CART and (b) SVM.
3 Results and discussion

3.1 Multiple linear regression

The MLR results using MATLAB software for the 101 direct shear tests are shown in Figure 5. The results show
that for the training database, the R? and MAE are equal to 0.481 and 0.034, respectively, and for the testing
database, the R? and MAE are 0.553 and 0.041, respectively. These values show that simple regression methods,
such as MLR, cannot achieve high accuracy in predicting the shear strength ratio (shear/normal stress) and other
methods like Al methods should be examined.
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Figure 5. The results of multiple linear regression (MLR) model.

3.2 CART Model

Figure 6 shows the best tree for predicting the shear strength ratio (shear/normal stress). This tree is very easy to
use and according to the rule of each leaf, model prediction for the shear strength ratio (shear/normal stress) can

be achieved. For example, in Figure 6, in

node 8:

® |cft branch: If the dry density is less than or equal to 1.44 g/m3,
® Right branch: If the dry density is greater than 1.44 g/m3.
As Figure 6 shows, the predicted shear strength ratio (shear/normal stress) in nodes 16 and 17 are:

® |_cft branch (node 16): 0.76
® Right branch (node 17): 0.83

As a result, with increasing dry density of soil, the predicted shear strength ratio (shear/normal stress) is

greater.
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Figure 6. Tree structure of the best CART model.

Figure 7 represents the results for the best CART. The results show that the R* and MAE of the best CART
for the training database are 0.817 and 0.015, respectively. Also, for the testing database, the best CART has the
R? and MAE of 0.897 and 0.013, respectively.
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3.3 SVM model

After examining different SVM models, the best model was obtained to predict shear strength ratio (shear/normal
stress). The results in Figure 8 show that the R? and MAE of the model were 0.942 and 0.008, respectively for
training database, and 0.895 and 0.013 respectively, for testing database. This accuracy indicates the proper

performance of the SVM method in predicting the shear strength ratio (shear/normal stress).
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Figure 8. SVM results for (a) training and (b) testing databases.
4 Conclusions

In this paper, for the first time, two methods of artificial intelligence (Al), namely CART and SVM, were used to
predict the shear strength ratio (shear/normal stress) of sand-rubber mixtures. For this purpose, a database of 101
sets from direct shear tests were collected. During modelling, 80% of the collected database was randomly
allocated for model training and 20% for model testing. The database consisted of nine input parameters, including
dry density, mean particle size (Dso), coefficient of curvature (Cc) and uniformity coefficient (Cu) of sand and
rubber, normal stress, rubber percentage, and one output parameter, i.e., the shear strength ratio (shear/normal
stress). The results showed that for the testing database, the R? of the best CART, SVM and MLR were equal to
0.90, 0.90 and 0.55, respectively. Also, the MAE of the CART, SVM and MLR were equal to 0.013, 0.013 and
0.041. These results show the good performance of Al methods in predicting the shear strength ratio (shear/normal
stress) of sand-rubber mixtures compared to simple regression methods such as MLR.
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