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Abstract: Predicting the consolidation-induced responses (e.g., settlement and excess pore pressures) is a challenging task due to
the existence of soft soils and various geotechnical-related uncertainties. To reduce these uncertainties, observational data obtained
at different monitoring moments can be used to update these responses, for example, through Bayesian methods. Nevertheless,
Bayesian updating of consolidation behaviors of soft soils can be computationally demanding when sophisticated computational
models are involved, and a great number of model evaluations are required for the updating given a monitoring dataset. This
becomes more challenging if multiple different datasets (e.g., those sequentially obtained at different monitoring moments) are
concerned, for each of which a Bayesian updating run is needed. This paper develops a novel simulation-based Bayesian
framework that allows efficient updating of soft soil behaviors based on different datasets. It consists of two major components:
(1) driving Bayesian analysis to generate problem-specific information on the response evaluations based on the monitoring dataset
obtained at early monitoring moments; and (2) target Bayesian analysis to update the soft soil behaviors given new datasets
obtained at latter monitoring moments by making use of the information generated in the first step, which requires negligible
computational efforts. A consolidation example of clay is adopted to demonstrate the efficiency and rationality of the proposed
approach. Effects of monitoring datasets with different types and locations on the updated response are also investigated.

Keywords: Bayesian updating; BUS; consolidation response; monitoring dataset.
1 Introduction

Predicting the time-dependent responses (e.g., settlement and pore pressure) concerning soft soils in engineering
practice is complicated due to various geotechnical-related uncertainties, e.g., those for properly characterizing
soft soils (Kelly et al. 2018). To reduce these uncertainties and understand the complex behaviors of soft soils, in
situ monitoring data combined with sophisticated numerical model is frequently adopted, for example, in the
deterministic or probabilistic inverse analysis (e.g., Rahimi et al. 2019; Tian et al. 2022). Bayesian approaches are
widely adopted in probabilistic inverse analyses due to their capability of quantifying various uncertainties and
combining newly obtained dataset with prior knowledge in a rigorous and consistent manner, and they have gain
extensive popularity for updating the geotechnical responses (Kelly and Huang 2015; Rahimi et al. 2019).
However, Bayesian updating of geotechnical structure responses (e.g., settlement and pore pressure) can be
computationally demanding. First, Bayesian updating requires to determine the posterior distribution of uncertain
parameters and update the corresponding responses given a dataset. These impose a computational burden when
computationally expensive numerical models are involved for response prediction. In such case, analytical
posterior distributions of uncertain model parameters may not exist and a great number of model evaluations are
required for populating posterior samples in simulation-based Bayesian inferences. The computational efforts
become more profound if multiple different datasets (e.g., those sequentially obtained at different monitoring
moments) are concerned and repeated runs of Bayesian updating are inevitable.
This study presents an auxiliary Bayesian framework for efficient updating of consolidation-induced responses
based on different datasets. It first performs driving Bayesian analysis to generate problem-specific information
using the monitoring dataset obtained at early monitoring moments. As more monitoring data is acquired later,
target Bayesian analysis is conducted to update the consolidation responses by making use of the information from
driving Bayesian analysis, which requires negligible computational efforts. This paper first describes the Bayesian
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framework for consolidation-induced response updating, followed by descriptions of the auxiliary Bayesian
approach. Finally, a consolidation example is employed to illustrate the proposed approach.

2 Bayesian updating of consolidation-induced responses

Let y; = [y1, »2, ...,»s] denote a vector of J measurements (e.g., settlement and/or pore pressure induced by
consolidation) available at monitoring moment j. Then, the updated responses Y, at 7/th monitoring moment can be
calculated under the Bayesian framework as:

Y, = [ M,(0)/(0ly,)do (1

where 0 represents a vector of uncertain model parameters; M(0) is the prediction model for consolidation
responses; and f{0]y;) denotes the posterior probability distribution function (PDF) that quantifies the updated
knowledge on 0 given yj;, and it is expressed as:

JOly;)=K,LOly,)f(6) )

where K; is a normalizing constant; /{0) is the prior PDF reflecting the available knowledge on 6 without yj; and
L(0]y)) denotes the likelihood function that describes the probabilistic relationship between the observed data (e.g.,
yr) and simulated responses (e.g., Mi(0) corresponding to yr) through model error (e.g., &). For demonstration,
assuming & (/ =1, 2, ..., J) are independently and normally distributed with zero mean and a standard deviation
of s then L(0]y;) can be written as:

J — M, (0))’
L®y) =] \/%0 exp[_(yz 202( ) ]
=1 & /

Evaluating Eq. (1) is usually challenged due to the unavailability of analytical expressions of posterior
distribution f{0|y;) and a significant number of computational model evaluations for generating samples following
A0ly)). Moreover, because monitoring dataset y; changes at different monitoring moments, repeated Bayesian
analyses are unavoidable, which further causes the computational difficulty. Therefore, this study develops an
auxiliary Bayesian framework for efficient updating of consolidation-induced responses considering datasets
obtained at different monitoring moments. As shown in Fig. 1, the proposed approach contains two major
components: (1) driving Bayesian analysis to generate problem-specific information using the monitoring data y*
(namely the driving dataset) obtained at early monitoring moments; and (2) target Bayesian analysis to update the
consolidation responses when more y; are sequentially obtained, as respectively described below.

3

3 Auxiliary Bayesian analysis

3.1 Driving Bayesian analysis

This subsection employs the BUS method to perform driving Bayesian analysis with y*. BUS addresses Bayesian
updating problems (e.g., Eq. (2)) with structural reliability methods by defining a failure event F* as (Straub and
Papaioannou 2015):

F* = {In(w)~In(c" - L(Oly")) < 0} @)

where w follows standard uniform distribution within [0, 1]; ¢" is a constant that satisfies ¢"L(0]y") < 1, and L(0]y")
is the likelihood function, for example, see Eq. (3) given y;=y".

Generating posterior samples or, equivalently, failure samples falling in F”, can be achieved using reliability
analysis methods (see Fig. 1(a)). In this study, Subset Simulation (SuS) is employed. SuS converts the occurrence
probability of a rare event (e.g., F") into the estimation of larger conditional probabilities of a sequence (e.g., m)
of nested intermediate events, and employs Markov Chain Monte Carlo to efficiently generate conditional samples
falling in each intermediate event (see Fig. 1(b)). After completing SuS, a total of m + 1 subsets Q; (i=0, 1, ...,
m, see Fig. 1(c)) divided from prior sample space are generated. These m + 1 subsets can be used to calculate P(F")
as (Au 2007; Tian et al. 2022):

Nl

P(F") =" P(FIQ)PQ)~D " > " 1,.(0,]Q)P)/N, (5)

where P(F"|Q;) is the probability of F~ conditional on €;, and it can be calculated as ZkN:"l T+ (0:Q)/Ni, and I+ (0:/€2)
is an indicator function taking as one if F~ occurs given the kth sample from Q; or zero otherwise; N; is the number
of samples in Q;, and it equals to N(1-po) fori =0, 1, ..., m-1, and N-po for i = m, where N and po are the number
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of samples and conditional probability in each level of SuS, respectively; P(€:) is the occurrence probability of Q:
and it is estimated as p{(1-po) for i=0, 1, ..., m-1, and p} for i = m (Au 2007).

During the driving Bayesian analysis, a total of Nt = N + N(m-1)(1-po) samples are generated, denoted as
“driving samples” in this study. For each sample within €;, the consolidation response predictions A;(0) at different
monitoring moments are calculated through the numerical model. The next subsection takes advantage of these
information (i.e., subsets Q; (i =0, 1, ..., m), and the simulated responses for each sample within these subsets) to

Target Bayesian analysis with y;

Monitoring moment 1 Monitoring moment 2

! I
' > > >

! \ Monitoring moment Monitoring moment Monitoring moment E

i D\\ Posterior prediction o o 1

steri odicti '

! \<’ Posterior prediction !

] o “~~~~~ D\\/ eoo O Posterior prediction ]

! Q o S —— o 1

7] 1] $2] 1

b s o 5 o 5§ O == '

! 1~ Monitoring data 4 Monitoring data 4 Monitoring data ]

1

: :

(e) Response predictions with y;

Figure 1. Auxiliary Bayesian framework for consolidation-induced response updating (Modified from Tian et al. 2022)

3.2 Target Bayesian analysis

As monitoring data (e.g., yj) appears, posterior samples and the corresponding updated consolidation responses
(e.g., ¥)) can be obtained using target Bayesian analysis. In the context of BUS, posterior samples are equivalent
to failure samples satisfying the region F; defined as:

F, = {In(w)~In(c, - L(8y,)) < 0} 6)

Herein, ¢; is a constant satisfies ¢;L(0]yy) < 1 and L(0]y;) is the likelihood function given by Eq. (3).

As indicated by Eq. (6), ¥, in Eq. (1) is actually the expected prediction of consolidation responses conditional
on the failure event F}, i.e., ;= E(Y,|F}). Based on the obtained subsets from driving Bayesian analysis (i.e., Qi, i =
0,1, ..., m), ¥, can be formulated using the theorem of total probability as (Au 2007):

Y, =E(Y, |F)=3"" E(Y, |Q,F)PQ]F) (7)

where E(Y|Q;,F)) represents the mean response prediction at the 7th monitoring moment estimated based on the
samples in Q; and satisfying Fj; P(Qi|F)) is the conditional probability of Q; given Fj. Let O;,; denote the conditional
event that the sample falls in Q: given the occurrence of F; (see Fig. 1(d)). Then, P(O;.) or P(Q4F)) is calculated
using the Bayes’ theorem as:

P(O,,) = PQ|F,) = P(F|Q,)P(Q,)/ P(F,) ®)

where P(Fj|Q) is the conditional probability of F; given i, and it is calculated as Z],‘ZIIFJ.(GHQI')/M, in which
1 F].(Gk|Qi) is the indicator function with respect to F; for the kth sample in Q;; P(F)) is the failure probability of F;
and it can be estimated as:

P(F)=Y" P(FIQ)PQ)=>" " I, (0,0)PQ)/N, )

Substituting Eqgs. (8) and (9) into Eq. (7) gives the estimate of ¥, based on y; (see Fig. 1(e)):
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ol m ot m N;i
Yt = ZI:OE(Y’ |Oj,i)P(Oj,i) ® Zizozk:l t(9k|0j,i)P(Oj,i)/Nj,i (10)

where M«(04O;.) (k=1, 2, ..., N;:) represents the model prediction at the 7th monitoring moment given the kth
samples in O, and Nj; is the sample size of Oj;. Moreover, given O;; (i =0, 1, ..., m), one can also obtain the
posterior statistics of 8, for example, the posterior mean value of 0 considering yj, p, () as:

m(¥) =" E®0,)PO,) (11)

where E(0]0O;,)) represents the mean values of 0 estimated based on the samples in Oy,

It is worthwhile to point out that the above process (see Egs. (8) — (10) or Fig. 1(d) — (e)) are evaluated based
on the same set of driving samples (see Fig. 1(c)) and the corresponding evaluated consolidation responses
throughout all monitoring moments concerned. This indicates that evaluating Eq. (10), including determination of
M«(040;.) and O;,;, requires negligible computational efforts because there is no need to repeatedly evaluate the
numerical model during the calculations and major computational efforts have been completed during the driving
Bayesian analysis. This significantly improves the computational efficiency of Bayesian updating with
sequentially obtained datasets at different monitoring moments, as demonstrated in the following.

4 TIllustrative example

This section applies the proposed approach to updating the consolidation-induced responses (e.g., settlement and
excess pore water pressure) under instantaneous loading condition (see Fig. 2). This study aims to predict the
settlement and excess pore pressures at various locations considering measurements from various time instances,
from which the ground settlement can be estimated with an analytical solution as (Knappett 2012):

2
S = mvH;/fo [1 - ZW exp(_Mva)J (12)
q=0

where M = m(2g+1)/2; T, is the dimensionless time factor calculated as T, = ¢,T/H?, and T is the time; cv is the
consolidation coefficient; H is the thickness of the soil layer; m» is the coefficient of volume compressibility; Hy
and yrare the thickness and unit weight of the fill, respectively. Meanwhile, excess pore pressure at various depths
z below the top of clay layer can be evaluated as (Knappett 2012):

27, Mz 2
u,_ = —— (sin—)exp(-M"T 13
Z T (sin— ) exp(-M’T,) (13)

Four uncertain variables 0 = {m., H, y;, ¢v} are considered, and prior statistics of these parameters are
summarized in Table 1. Following Kelly and Huang (2015) and Rahimi et al. (2019), real monitoring data is
synthesized with “true values” of @ shown in the last column of Table 1, and measurement errors of settlement and
pore pressures are normally distributed with constant standard deviations of 0.02 m and 1.0 kPa, respectively.
Moreover, Hr=3m and g =9 are selected for calculating s and u:., which are used as model predictions A(0) for
Bayesian updating, as illustrated below.

: Table 1. Prior statistics of uncertain variables for one-
AFﬁﬂ : i dimensional consolidation (Rahimi et al. 2019)
Soil Prior statistics True
parameters  Distribution Mean COV  value
my, 1/kPa Lognormal  0.001 0.40 0.0014

H,m Lognormal 5.0 0.10 5.50
: 75, kKN/m? Lognormal ~ 20.0  0.10 22.0
s = < { - ¢, m*/year  Lognormal  40.0  1.00 80.0

Figure 2. Gebﬁ’netry and.b.o{mdary of one-dimensional
consolidation example

4.1 Response updating considering settlement only

This subsection performs Bayesian updating considering settlement measurements only. For this purpose, driving
dataset y" is selected as the data from the first monitoring moment (i.e., y* = ys.1 = [Vsettle,1]), and driving Bayesian
analysis is performed with po = 0.1 and N = 10000. This generates 19000 driving samples falling in three subsets
(i.e., Qo, Q1 and Q2 with 9000, 9000 and 1000 samples, respectively). Moreover, response predictions A(0)
corresponding to these 19000 samples are also calculated. As new dataset appears, driving samples and their
response predictions (e.g., settlement) are used in target Bayesian analysis to facilitate the settlement updating.
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Consider, for example, at monitoring moment j = 2, settlement measurements ys2= [Vsettle, 1, Vsettle.2| are available.
Then, the updated settlement ¥, given ys> can be estimated according to Eq. (10), as shown by the line with crosses
in Fig. 3 (a). For comparison, Fig. 3 (a) also displays the measurement and prior settlement prediction by circles and
solid line, respectively. Prior prediction in this study is estimated as the mean value of simulated responses (e.g.,
settlement) calculated based on 1000 prior samples. It is found that the updated settlement ¥, deviates from prior
prediction and plots closer to measurements. This implies that the updated Y, is greatly updated by incorporating ..

To validate the proposed approach, conventional Bayesian updating approach is conducted to populate posterior
samples given a dataset (e.g., ys2) and estimate the corresponding updated responses. Note that many datasets (e.g.,
those from different monitoring moments) are involved in this study. This necessitates repeated conventional
Bayesian updating analyses, denoted as “RCBU” herein. For illustration, BUS with SuS is adopted, in which N =
10000 and po = 0.1. Fig. 3 (a) gives the updated settlement from RCBU by squares as well. The updated settlements
from the proposed approach and RCBU agree well with each other, which validates the proposed approach.

Under the proposed approach, one can also obtain the updated settlement considering other values of ys;. For
example, Fig. 3 (b) - (c) give the updated settlement considering ys4 and ys 10, respectively. As observed from Fig.
3 (a) - (c), the updated settlement ¥, (see line with crosses) gradually approaches measurements by incorporating
more datasets, and ¥, given yio has an excellent agreement with measurements (see Fig. 3 (c)). This observation is
further validated by the RCBU results shown by squares in Fig. 3.

It is worthwhile to emphasize that the updated settlements at different monitoring moments (e.g., j =2, 4 and
10) in Fig. 3 are obtained based on the same driving samples. This indicates that no additional samples are
simulated for settlement updating with new dataset and model evaluations are avoided as new dataset is available,
which leads to significant computational savings. For example, calculations to obtain results in Fig. 3 can be
finished within a second in a desktop computer. In contract, RCBU has to regenerate the posterior samples and
reevaluate the model for predicting settlements. Therefore, the proposed approach achieves great computational
efficiency for response updating considering sequentially acquired monitoring datasets.

0.0 0.0 0.0
, (b)j=4
0.1 0.1P 0.1
g 02 g 0.2 g 02
5 03 5 03 5 03
g =) =]
Q Q [
g 04 T 04 % T 04
n A O  Measurement® A
0.5 Prior prediction © © oooummmo 0.5/ o RCBU 0.5
06— Posterior prediction 0.6== Posterior prediction 0.6== Posterior prediction
107 10" 10° 107 10" 10° 107 10" 10°
Time of monitoring moment, year Time of monitoring moment, year Time of monitoring moment, year

Figure 3. Updated settlements considering settlement measurements from different monitoring moments

4.2 Response updating considering settlement and pore pressure

This subsection further demonstrates the proposed approach by considering more types of measurements (e.g.,
settlement and excess pore water pressure) from different locations. Herein, settlement at z = 0 and excess pore
pressures atz =1 and 5 m are considered. Similarly, driving Bayesian analysis is first conducted under the proposed
approach, in which N = 10000 and po = 0.1, and driving data y" is selected as y* = ysp,1 = [Vsettle, 1, Vpore,1.==1, Vpore,1,2=5 ]
from the first monitoring moment. After obtaining the driving samples and their corresponding simulated
responses (e.g., settlement at z = 0 and pore pressures at z = 1 and 5 m), the updated settlement and excess pore
pressures considering different y; can be calculated with relative ease according to Eq. (10).

For example, Fig. 4 (a) - (c) depict the updated responses ¥, considering ysp.2, ysp.4 and ysp.10at j = 2, 4 and 10,
respectively. As shown in Fig. 4 (a), the updated settlement given ysp2 (see black line with crosses) is generally
consistent with measurements (see black circles), which is more accurate compared with prior prediction (see
black line). The same observation is obtained for excess pore pressures at z = 1 m and 5 m shown by green and
blue colors, respectively. As more datasets are included in Bayesian updating, the updated responses converge to
their respective measurements. For example, when ysp4 is considered at j = 4, the updated settlement and excess
pore pressures match well with their measurements (see Fig. 4 (b)).
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Figure 4. Updated responses considering measurements of various sources at different monitoring moments
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Figure 5. Mean value of posterior samples considering measurements from different sources

In addition to the updated responses, Fig. 5 (a) - (d) gives the mean posterior values p,(ysp,) of four parameters
concerned (i.e., mv, H, yrand ¢v) according to Eq. (11) considering ysp, (i.€., settlement and pore pressures) throughout
all monitoring moments, as denoted by line with crosses. For comparison, “true” values of these four parameters are
given by dash lines. It is found that as j increases or the amount of incorporated dataset ysp; becomes greater, p,(vsp.)

gradually converges to their true values for my, H, yrand ¢, as illustrated by Fig. 5 (a) - (d). This is further validated
by the RCBU results shown by squares, which agrees well with those from the proposed approach. In addition,
posterior mean values considering settlement measurements only, i.e., py(s)), are also plotted in Fig. 5 by line with
circles. Obviously, p,(ys,) do not converge to their respective “true” values though the updated settlement has a good

match with measurements (see Fig. 3 (¢)). This demonstrates the advantageous performance by incorporating various
types of measurements (e.g., settlement and excess pore pressure) from different locations. Nonetheless, the proposed
approach provides an efficient vehicle for performing Bayesian updating considering measurements of different
sources sequentially obtained at different monitoring moments.

5 Summary and conclusions

This paper proposed an auxiliary Bayesian approach for efficient updating of consolidation-induced responses. The
proposed approach first performs driving Bayesian analysis using BUS and subset simulation (SuS) to generate diving
samples and evaluate their corresponding responses based on the monitoring dataset obtained at early monitoring
moments. Then, target Bayesian analysis is conducted as new dataset becomes available, which avoids regenerating
new samples from posterior distribution given the new dataset and reevaluating the corresponding numerical model.

The proposed approach was illustrated using a consolidation example of clay. Results obtained from the
proposed approach were compared and validated with those from repeated Bayesian updating analyses given
different monitoring datasets. It was shown that the proposed approach requires only one simulation run for driving
Bayesian analysis, and achieves great computational efficiency for target Bayesian analysis given a new dataset.
Moreover, effects of monitoring datasets of different sources (e.g., settlement and/or pore pressures at various
locations) on the updated response were also explored. It was demonstrated the value of considering various types
of measurements from different locations. The proposed approach provides an efficient tool for Bayesian updating
considering different monitoring datasets.
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