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Abstract: Predicting soil hydraulic responses of a slope under rainfalls is critical for predicting slope instability. This can be
performed using a physics-based slope hydraulic model and soil hydraulic parameters. However, the numerical modeling of
slope hydraulic analysis may be non-trivial for some reasons. For example, subsurface conditions of the slope are invisible
and may vary with time; soil properties are spatially variable; and site investigation data are often quite limited in
geotechnical practice. Therefore, a slope can be modelled by a series of candidate slope hydraulic models with different
choices of governing equations, boundary conditions, and initial conditions. In addition, soil hydraulic parameters from site
investigation at the slope could have large uncertainties. Monitoring data (e.g., rainfall and pore water pressure of soil under
rainfalls) represent actual field responses of an existing slope subjected to rainfalls and can provide valuable information for
the slope subsurface conditions. This study uses monitoring data from a real slope and Bayesian updating with structural
reliability methods (BUS) to select the most suitable slope hydraulic model among a series of candidate models and identify
the most appropriate soil hydraulic parameters. Results showed that the most suitable slope hydraulic model not only
improves quantification of uncertainties in soil hydraulic parameters, but also accurately predicts soil hydraulic responses
under future rainfalls. The proposed method enables a monitoring data-driven way for numerical modeling of slope hydraulic
analysis.
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1 Introduction

Predicting soil hydraulic responses (e.g., pore water pressure, PWP) of a slope under rainfalls is critical for
predicting slope instability, and thus landslide early warning (Lu and Godt, 2013). This can be performed using a
physics-based slope hydraulic model and soil hydraulic parameters. However, the numerical modeling of slope
hydraulic analysis may be non-trivial for some reasons. For example, subsurface conditions of the slope are
invisible and may vary with time; soil properties are spatially variable; and site investigation data are often quite
limited in geotechnical practice. Therefore, a slope can be modelled by a series of candidate slope hydraulic
models with different choices of governing equations, boundary conditions, and initial conditions. In addition,
soil hydraulic parameters from site investigation at the slope could have large uncertainties (Phoon et al., 2010).
Monitoring data (e.g., rainfall and PWP of soil under rainfalls) represent actual field responses of an existing
slope subjected to rainfalls and can provide valuable information for the slope subsurface conditions (Zhang et
al., 2013).

This study presents a monitoring data-driven method (Liu and Wang, 2021) that utilizes existing monitoring
data to select the most suitable slope hydraulic model among a series of candidate models and identify the most
appropriate soil hydraulic parameters based on Bayesian updating with structural reliability methods (BUS)
(Straub and Papaioannou, 2015). The proposed method is introduced in Section 2. Section 3 shows the
application of the proposed method to a real slope with in situ monitoring data. Conclusions are drawn in Section
4.

2 Methodology

Figure 1 presents a framework of the proposed method (Liu and Wang, 2021). For a given slope with available
monitoring data of rainfall and PWP, due to a lack of subsurface information and site investigation data in slope
practice, candidate slope hydraulic models can be established by considering different model settings (e.g.,
governing equations, boundary conditions, and initial conditions). The soil hydraulic parameters are taken as
uncertain parameters. Their prior distributions can be determined using existing database of soil hydraulic
properties. Then, each candidate model is used to perform probabilistic back analysis using BUS to obtain the
model evidence and the posterior distribution of uncertain parameters. Repeat this procedure for all candidate
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models. The most suitable slope hydraulic model and its parameters can be identified using Bayesian model
comparison. The slope hydraulic model and parameters can be used to predict soil hydraulic responses under
future rainfalls for landslide risk mitigation and early warning.

Pore water pressure (PWP)
Actual rainfall records at a slope time series from piezometers
during the rainfall

Establish candidate slope hydraulic
models considering the rainfall and
different settings

!

Determine prior distributions of soil
hydraulic parameters

v

Each candidate model is used to
perform Bayesian updating with
structural reliability methods (BUS)

v

Select the most suitable hydraulic
model and identify posterior
distributions of its soil hydraulic
parameters

v
Predict soil hydraulic responses
using the most suitable hydraulic
model and the identified model
parameters

Existing database of soil
hydraulic parameters

A

A

Figure 1. Framework of the proposed method (after Liu and Wang, 2021)

2.1 Slope hydraulic analysis under rainfalls

Physics-based slope hydraulic models are often used to predict soil hydraulic responses under rainfall
infiltration, which is associated with the numerical modeling of seepage flow in saturated and/or unsaturated
soils subjected to rainfall infiltration. The numerical modeling often includes three components, i.e., governing
equations, boundary conditions, and initial conditions.

Table 1 shows various model choices regarding these three components. For example, Green-Ampt model
and Richards equation are two popular governing equations. In addition, soil water characteristic curve (SWCC)
and hydraulic conductivity function (HCF) are needed to describe behaviors of unsaturated soils. Specifically,
SWCC describes the relationship between the matric suction and volumetric water content. HCF represents the
variation of hydraulic conductivity with volumetric water content. Both SWCC and HCF are nonlinear, and they
can be measured from laboratory tests or fitted by some empirical equations. For example, SWCC and HCF in
the previous studies are often represented by van Genuchten’s (1980) and Mualem’s (1976) models,
respectively.

There are also different choices for boundary conditions at the slope surface and bottom and initial
conditions. For example, the slope may have a constant pressure or a free drainage boundary condition. Initial
conditions of PWP and ground water table (GWT) can be hydrostatic, truncated hydrostatic, and constant.
Detailed illustration of these initial conditions of PWP are referred to Liu and Wang (2021).

It is possible to develop more than a dozen of candidate slope hydraulic models with different model
settings. Previous studies (Ali et al., 2014; Phoon et al., 2015) reported that these model settings are found
important in controlling soil hydraulic responses, and soil hydraulic parameters may have large uncertainties. It
is of interest to utilize monitoring data to choose the most suitable model and identify the most appropriate soil
hydraulic parameters.

2.2 Bayesian updating with structural reliability methods (BUS)

The selection of the most suitable and identification of parameters can be formulated as a Bayesian updating
problem. The problem may not be solved analytically due to nonlinear equations. The problem is often solved by
generating random samples satisfy posterior distributions of uncertain parameters or posterior random samples
using sampling-based methods, including Markov Chain Monte Carlo simulation (MCMCS) method (Press et al.,
2007), ensemble Kalman filter method (Vardon et al., 2016), and BUS (Straub and Papaioannou, 2015; Betz et
al., 2018). BUS has the advantage of combining with existing well-developed structural reliability methods, for
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example, subset simulation (SS) (Au and Beck, 2001) to take the advantage of SS in generating high-dimension
random samples. The essence of BUS is to transform the Bayesian updating problem to a structural reliability
problem, whose limit state function can be written as

g(8,7)=Inz+d-InL(y0,M,) (1)

where 0 is the uncertain parameters considered in the candidate model; In(-) is the natural logarithm function; =
is an additional uniform random variable in [0, 1], and it extends the dimension of parameter domain from 0 to

[0, ]; d is a positive constant that satisfies d —In L ()"f

0,M, ) >0, and d can be automatically determined by an
adaptive strategy (Betz et al., 2018); and L ()7

0,M k) is the likelihood function of @ and 4-th candidate model Mj

for monitoring data of PWP y .
The corresponding failure probability is given by

pr=P[g(0.7)<0] )

Let y denote the simulated responses from A;. Because model assumptions and simplification, there are
inevitable residuals between y and ¥ that may be modelled by random variables. The likelihood function can be

written as

L(3]0.M,)=/,(y-3) 3)

where fi(-) denotes the probability density function (PDF) of ¥ —¥ , which may be represented by a zero-mean

jointly independent Gaussian distribution.

According to Bayesian model selection method, the most suitable model is selected as the candidate model
with the largest evidence, where evidence is a quantitative indicator that incorporates the prior distribution of 0,
likelihood function, and monitoring data. Under the framework of BUS, the model evidence can be calculated by

e, =p,-exp(d) “)
where er denotes the evidence of the k-th candidate model.

Table 1. Summary of different settings for establishing candidate slope hydraulic models

Model setting  Category Possible choices
Governing Transient seepage flow 1.Green-Ampt model (e.g., Chen and
equations with rainfall infiltration Young, 2006)

2. Analytical solution of Richards equation
(e.g., Srivastava and Yeh, 1991)
3. Numerical solution of Richards equation
(e.g., HYDRUS-1D software)
Soil water characteristic 1. A simplified exponential model (e.g.,
curve (SWCC) Srivastava and Yeh, 1991)
2. Gardner model (Gardner, 1958)
3. van Genuchten model (van Genuchten,

1980)
4. Fredlund and Xing model (Fredlund and
Xing, 1994)
Hydraulic conductivity 1. A simplified exponential model (e.g.,
function (HCF) Srivastava and Yeh, 1991)

2. Gardner model (Gardner, 1958)
. Mualem model (Mualem, 1976)
. Infiltration with ponding

. Infiltration without ponding

. Impermeable

. Constant pressure head

. Free drainage

. Prescribed flux

Boundary Surface boundary
conditions condition
Boundary condition at
slope bottom

Initial Initial profile of PWP and Hydrostatic
conditions ground water table . Truncated hydrostatic
. Constant
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The abovementioned structural reliability problem can be easily solved using SS to obtain the model
evidence. The failure samples that satisfy g < 0 are exactly posterior samples of concern. Detailed
implementation procedure of BUS can be found in the previous studies (Straub and Papaioannou, 2015; Betz et
al., 2018; Liu and Wang, 2021).

3 Application to a real slope example with monitoring data

The proposed method is applied to a real slope with in situ monitoring data. The slope is located in Tung Chung
east, Lantau Island of Hong Kong. Preliminary investigation (Evans and Lam, 2003) showed that the slope may
have a typical shallow failure induced by rainfall. A monitoring project was initiated by Geotechnical
Engineering Office of Hong Kong to monitor rainfall, PWP, and displacement at the site. Figure 2 shows the
monitoring data of PWP and the rainfall observed at the site from 8 — 15 June of 2001. The monitoring data of
rainfall and PWP have an equal length of 192h and an equal interval of one hour. The monitoring data of PWP
are measured from the piezometer SP3 that is buried 2m below the ground surface. Figure 2 suggests that rainfall
infiltration controls the variation of PWP time series. Details of the monitoring project and data can be found in
the published report (Evans and Lam, 2003).

The model is modelled a one-dimensional slope hydraulic model. The slope angle and depth are 40° and Sm,
respectively. Due to a lack of subsurface information, three candidate slope hydraulic models are developed for
probabilistic back analysis. Table 2 shows that the three models are different in initial conditions of PWP,
bottom boundary condition, SWCC, and HCF. Models 1 and 2 are developed using the open-source software
HYDRUS-1D, while Model 3 is solved by the analytical solution (Srivastava and Yeh, 1991; Zhang et al., 2013)
for comparison. The uncertain parameters considered in the Models 1 and 2 include saturated hydraulic
conductivity Kj, saturated volumetric water content 65, SWCC parameter a, SWCC parameter #, the depth of
initial ground water table dw, and parameters for defining the matric suction in the shallow soil (Liu and Wang,
2021). Prior distributions of the soil parameters are taken as the those of loam reported in Carsel and Parrish
(1988) based on the soil texture. In addition, the slope is divided into 50 parallel soil layers with an equal
thickness to model the spatial variability of K; using a random field. The uncertain parameters considered in
Model 3 and their prior distributions are taken from Zhang et al. (2013). The residuals of PWP are assumed to
follow an independent Gaussian distribution with zero mean and an equal standard deviation (SD) of 0.05m.
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Figure 2. Monitoring data and posterior mean of PWP during a real rainfall
Table 2. Comparison of candidate slope hydraulic models
Candidate  Initial condition of Bottom boundary  SWCC HCF Maximum Model
model PWP condition logarithmic  evidence
likelihood
Model 1*  Truncated hydrostatic ~ Constant pressure ~ van Genuchten’s Mualem’s 237.4 8.91x10%
Model 2 Constant Free drainage van Genuchten’s Mualem’s 214.7 5.39x107°
Model 3 Steady Constant pressure  Exponential Exponential 185.6 1.81x107°

*The most suitable slope hydraulic model selected by the proposed method.
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Figure 4. Posterior distributions of uncertain soil hydraulic parameters

Then, the three candidate models were respectively used to perform probability back analysis using BUS.
The number of samples generated in each simulation level of SS was taken as 10,000. The number of posterior
samples was taken as 50,000. Table 2 provides their maximum likelihood and model evidence. Model 1 has the
largest evidence of 8.91x10°? among the three candidate models, and it is selected as the most suitable model
given the monitoring data. Figure 2 shows the posterior mean of PWP obtained from three models. All the three
models seem to produce PWP responses comparable to the monitoring data, but Model 1 is the most accurate.
This suggests that BUS enables a monitoring data-driven way for numerical modeling of slope hydraulic analysis.

Posterior results obtained from only Model 1 are presented in the following. Figure 3 illustrates the
posterior results of K along the depth. K; slightly increses with the depth. The mean of K is consistent with that
obtianed from Zhang et al. (2013), in which homogenous K; is assumed and represented by a random variable.
Figure 4 (a-d) show the prior and posterior distributions of 85, a, n, and dw, respectively. As shown by Figure
4(b), the prior distribution of a is very flat, but the posteiror distribution becomes highly concentrated between 0
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— 1. The SD of a decreases from 2.1 to 0.064, indicating a significant reduction in coefficient of variation from
0.58 to 0.15. Similar phenomena can also be oberved from other subfigues of Figure 4. This indicates that
probabilistic back analysis with monitoring data effectively reduces the uncertainties of uncertain soil hydraulic
parameters, leading to a more accurate and less uncertain numeircal model for slope hydraulic analysis.

In addition, Figure 5 shows PWP responses of a future rainfall from 22 — 30 June of 2001 predicted using
three candidate models with the corresponding posterior mean parameters. Among the three candiate models, the
PWP responses obtained from Model 1, i.e., the most suitable model, are the most consistent with measurements.
This implies that the most suitable model can outperform other models in predicting soil hydraulic responses
under future rainfalls.
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Figure 5. PWP responses of a future rainfall predicted using three candidate models

4 Conclusions

This study developed a probabilistic back analysis method based on BUS that utilizes existing monitoring data to
select the most suitable numerical model and identify parameters for slope hydraulic analysis. The proposed
method was illustrated by a real slope with in situ monitoring data of rainfall and PWP. Results showed that the
most suitable model can produce responses consistent with the monitoring data. The monitoring data can be used
to determine model settings, including governing equation, boundary condition, and initial condition. The most
suitable slope hydraulic model not only improves quantification of uncertainties in soil hydraulic parameters, but
also accurately predicts soil hydraulic responses under future rainfalls The proposed method enables a
monitoring data-driven way for numerical modeling of slope hydraulic analysis. It may be extended to two-
dimensional (2D) and three-dimensional (3D) slopes for future studies.
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