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Abstract: Estimation of the extent of piping or internal erosion in an earthen embankment/ levee can provide valuable
information for the serviceability of such geotechnical structures. Working in a Bayesian framework, different parameter
updates are discussed for the update of domain geometry, using a statistically efficient gradient based Markov Chain Monte
Carlo (MCMC) algorithm called Hamiltonian Monte Carlo (HMC). Although, the hydraulic conductivity spatial random field
is generally uncertain, it is assumed to be known exactly in this study (for simplicity), and the updates presented only consider
uncertainty in domain boundary. The parameter updates are discussed for volume integral method based discretization of
domains e.g. finite element method. The main challenge in such shape detection problems is to ensure a high quality of mesh
as the boundary is updated. As such, the parameter update methods can be classified into two groups, one without remeshing
and the other with remeshing. Additionally, in HMC, parameter updates have to be designed in a manner that finite element
nodal coordinate functions are differentiable w.r.t the parameters. For the class of updates that do not involve remeshing,
methods that maintain mesh quality even under large distortions, such as the mesh moving method are considered. The
reversibility aspects of such updates and their implications on the inverse analysis are highlighted. A method to compute nodal
coordinate gradients w.r.t parameters, in the remeshing case is also discussed. Finally, the merits and demerits of the two classes
of methods are highlighted and an extension of the remeshing class to trans-dimensional parameter updates is briefly introduced.
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1 Introduction

Piping zone boundary detection is an example of a geometric inverse problem where the target is the determination
of the boundary of the domain. Accurate solution of the inverse problem naturally requires accurate computation
of the forward problem also. This is dependent on the quality of mesh used for the forward analysis. Maintaining
a high quality of mesh, free from distortions, with uniform-sized elements throughout the domain during inversion
procedures where gradients of the forward problem are required, is a challenging task. Methods that continuously
move a mesh with fixed connectivities (Stein et al. 2003; Koch et al. 2020) are one way to maintain a decent mesh
quality. However, these methods provide no guarantee of a good mesh quality and can produce meshes that are
severely non-uniform or in some cases folded too, especially around fixed observation points.

Remeshing is seen as a natural alternative to solve these issues. However, it isn’t clear how the gradients of
the nodal coordinate functions can be evaluated if naive remeshing is done. These gradients are essential to all
gradient based inversion algorithms, including the statistically efficient Markov Chain Monte Carlo (MCMC)
algorithm called Hamiltonian Monte Carlo (HMC) (Neal 2011). Shape sensitivity analysis in such problems
ultimately requires the computation of nodal coordinate gradients w.r.t to the shape (boundary) parameters.
Additionally, as a numerical approximation is being made, it is almost certain that the Hamiltonian will not be
constant before and after remeshing. In other words, remeshing acts like an event-driven discontinuity (Afshar,
M.H. and Domke, 2015) at the current point in parameter space. Standard HMC isn’t applicable in such cases.

This paper revisits the problem of analytical calculation of shape sensitivities when remeshing is done during
the parameter update. First the basics of probabilistic inverse problems are highlighted in Section 2. Building upon
the arbitrary reference mesh based geometry update of Koch et al. (2020), a method is highlighted in Section 3 that
respects the reversibility criterion of all MCMC algorithms and can incorporate remeshing while allowing for
gradients to be calculated. For simplicity of presentation, the hydraulic conductivity spatial field is assumed to be
known and the only unknowns are the parameters defining the piping zone boundary in the numerical
implementation in Section 4. Comments on applicability of such updates to trans-dimensional problems are
highlighted in Section 5.

2 Probabilistic inversion using HMC
The forward problem of steady state fluid flow is defined by the Laplace equation which is considered on a domain
with a pipe, parameterized by the vector @ = (I, w), at the top-right of the domain (), with standard Dirichlet and

Neumann boundary conditions. The PDE is solved by the finite element method with varying boundary conditions
at different time instants k € {1,...,n}, yielding discretized governing equations of the form
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K(®)h, = q, (D

where K is the hydraulic conductivity matrix and h,, and q, are the hydraulic head and nodal flux vectors
respectively. To solve the inverse problem, a Gaussian observation model which connects the observations y;, to
the state variables m;, = (hy, q,,) is also considered and is given as

Y = Hmy(0) +ry, ()

where 1, ~ N(0, R;,) is the Gaussian observation error with zero mean and covariance matrix R;.. H is a matrix
mapping the state vector at all the nodes to the state vector at the observation nodes.

The unique feature of HMC is the association of a momentum p with every point in 8-space such that a joint
probability distribution p(0,p) can be defined where p(0,p) = p(P)p(0ly;.,) . Considering a Gaussian
momentum, p ~ N(0, M), with a user defined covariance, the Hamiltonian (H) can then be defined as

H(®,p) = —logp(p) — logp(Bly;.,) + const.. 3)

The potential energy or negative-log of the posterior distribution is ¢(0) = —logp(0ly,.,) and the
remaining part (excluding the constants) is called the Kinetic energy. Ignoring the constants, considering a
Gaussian prior 8 ~ N(0, Zq) the potential energy is written as

9(8) = T3, 2 (v — Hm,(8)) Ry (3, — Hm, (8)) + 2070, 3)

HMC then explores level sets of H through numerical solutions of the Hamiltonian dynamics equations. One
such numerical scheme, called the leapfrog method, is written as

ap(0(t) _ dp(0(t+e) 4
p(t+5)=p®) -2 ot + &) =0(0) + emp (¢t +5). pt+&) =p (e +5) - LD @)
These equations are solved L times with a step-size € to move to the next sample in the HMC chain. Each

transition (0, p) — (0% p*) is exactly reversible, provided the gradients Z—ﬁ in Eq. 4 are one-to-one, and the

detailed balance condition is obeyed through acceptance probabilities of the kind A = min {l,exp (_—Hzi?eg)))}

3  Geometry updates

3.1 State of the art in geometry updates

The parameter 0 characterizes the unknown part of the boundary of the domain I, (see Fig. 1). The main question
in geometry updates is: how to update the mesh nodal coordinates Z, corresponding to the parameter update 8(t) —
0(t + €)? It is possible to pre-design one-to-one explicit O-parameterized functions Z,(0) for a subset of the nodal
coordinates Z, representing the coordinates of the nodes on the boundary I,. Designing such explicit functions for
the interior nodes subset of Z is however a much more complicated task and except for simple geometries, is almost
impossible. A simple Lagrangian displacement of the mesh is also not a valid option as large distortions may occur
during the update and no guarantees can be made on the quality of the updated mesh. To this end, Koch et al.
(2020) developed a parameter update that incorporates the mesh moving method of Stein et al. (2003) to maintain
a good mesh quality. However, even though the mesh moving method can significantly eliminate mesh distortion,
it does not eliminate it completely. A folding of the mesh may still occur around the fixed observation points, when
large displacements take place. Moreover, the mesh can also deform to such an extent that some elements might
become “excessively large” and accurate computations might not be possible in these regions of the domain.
Furthermore, these updates are not amenable to trans-dimensional jumps in parameter space. This paper
investigates these aspects of the geometry update further.
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Figure 1. Domain schematic showing the pipe of length (/) and width (w). In this paper, I}, = I U Ty
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An additional aspect of the parameter update that is unique to HMC is the question of reversibility. Sticking
with the method described in Koch et al. (2020), the mesh moving method yields a displacement u"®/ for all nodes
in the mesh. Node coordinates at the next time-step Z(G(t + 8)) can then be calculated as

Z(0(t + £)) = Z7 (87 + u™e, 4)

where Z7¢f(87¢f) refers to a discretization of the reference domain i.e., a placeholder domain with node

coordinates Z™/, with boundary defined by an arbitrary 87¢/. The subset of nodal displacements on the boundary

[, i.e. u,r,ef are known apriori because ZU(B(t + s)) is known apriori and the displacements can be calculated as

u, =Z,(0(t +¢) —Z, (87¢). The remaining subset of the interior nodes ujc/ can then be obtained by

solving an elastic deformation problem with prescribed displacements u,r,ef . The mesh moving method is used in
this step to ensure a good quality mesh and yields the total displacements of all the nodes {u™®/} = {uf,ef } U{ulrrf{ .
Once the new position of all the nodes is known, the forward problem Eq. (1) can be solved and the potential
energy (Eq. 3) an be computed. In this update, the gradient Z—(g can be computed because the gradient of the mesh

aureS

movement u"® from the reference domain is a one-to-one function of 0. The derivative is one-to-one as long

uref ou’eS

v int
nd —2£ are one-to-one.
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The choice of this placeholder reference domain and its discretization is up to the user and the simplest choice
one can make is Z"¢/(87¢/) = Z(O(t)). This choice however produces irreversible updates because u;f{ is
obtained from an elastic deformation problem solved on a domain with coordinates Z(G(t)) in the forward
ref

int
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direction and Z(G(t + 28)) in the reverse direction. This means u (G(t)) is no longer one-to-one and by

ap(e()) .

extension is not one-to-one. The solution to this problem proposed in Koch et al. (2020) is to consider

Zref (@ref) = Zfixed(@fixed) where the updates always take place from an arbitrary fixed reference configuration
(see Fig. 2(a)). As the reference domain is always fixed, it is easy to see why this update is one-to-one. However,
the problems mentioned earlier in this section remain and must be addressed.

3.2 New parameter updates

One method to ensure that a high-quality mesh exists at each time (t) is to remesh the domain. But this sets up an
interesting question on how to compute the HMC gradients. Construction of one-to-one differentiable maps is
impossible in such cases. Henceforth, a brief description is given on how remeshing is incorporated in the HMC
framework.

3.2.1 Remeshing the reference domain

Two features are added to the reversible mesh moving proposal described above. It is apparent that the reversibility
of this method comes from the fact that the mesh at each step (t) is updated from a fixed reference configuration.
This can be generalized by allowing the reference configuration to change at every step (t), provided each
configuration is kept in memory and the same corresponding configuration is used in a reverse move. Such an
update would also guarantee reversibility. Mathematically, this can be written as Ziref (G;ef ) = Zlf red (9{ Lxed),
where i = (1, ..., L). Each of these configurations can be set arbitrarily, but once set must be kept fixed in the
forward and reverse moves. The second feature becomes apparent immediately. As each of these configurations
can be arbitrarily set, different reference configurations corresponding to different Gfef can be formed by
remeshing the reference domain (see Fig. 1(b)).

3.2.2  Selecting the reference configurations

Although remeshing is possible, it is not clear what advantage is to be gained by selecting different remeshed
reference configurations in this problem. The need for a high-quality mesh (on which the forward problem is
solved) at each time step motivates the goal for selecting a reference configuration i.e., there should little to no
distortion in the elements in the mesh movement phase. This can be achieved by choosing the reference domain
boundary at a particular time (t) to be as close as possible to the boundary of the domain (which is known apriori).
As 0(t) - 0(t + €), boundary nodal coordinates Z,, (O(t + s)) are available apriori. The remeshed arbitrary

reference domain for the time step (¢t + €) can then be constructed with boundary nodal coordinates Z;if (Ggef ) =

Z,,(6(t+¢&)+ 8). The increment § — 0 is chosen so that the reference domain boundary is just a slightly
perturbed version of the already known boundary at that time step. This then sets up an infinitesimal prescribed
displacement problem to evaluate the HMC gradients which should ensure a high quality of mesh as displacements
and distortions will be minimal.
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Figure 2. Schematic showing (a) update from a fixed reference configuration and (b) update from different reference
configurations at different steps of HMC. Only the top-right part of the domain is shown.

4 Numerical implementation and results

4.1 Observation data

Synthetic observation data for inversion was obtained from a domain with "*¢ = (0.14,0.04). The position of
the observation points B,...,F are shown in Fig. 3 and the discretization was done with uniform sized elements of
average size 1/4" of the smallest elements shown in Fig. 3. Dirichlet BCs were set such that steady state flow was
prescribed from left to right. The Neumann boundaries were set as no-flow boundaries. For a fixed uniform
hydraulic conductivity, hydraulic head data was measured at the five red observation points and the outward flow
data was measured as the sum of total outward normal flow from the right boundary nodes shown in green. Ten
sets (k = 10) of observations were obtained for different Dirichlet BCs. An observation noise was added to the
recorded data in the proportion of 1% for h; and 5% for qy.

Figure 3. (left) Initial reference domain with 87¢/ = (0.05 m, 0.08 m) showing position of observation points. (center)
Hydraulic head observation data (diamonds represent input hydraulic head on left boundary, head on right boundary is fixed
at zero). (right) Total outward flow data.

4.2 Numerical simulation and results

As the solution is expected to be correlated, the initial reference mesh was chosen to be highly uncorrelated i.e.
07¢/ = (0.05 m, 0.08 m) as shown in Fig. 3. The number of leapfrog steps required to generate each sample was
determined randomly from a normal distribution N(10,3). A total of 10,000 samples were obtained, and the first
2000 samples were considered as burn-in samples. Posterior 1-D and 2-D marginals, obtained from 8000 samples
post burn-in are shown in Fig. 4. Dark grey contours indicate the 50% and 95% High Probability Density (HPD)
regions such that 50% and 95% of the total marginal probability lie within these contours. The 2-D marginal is
highly correlated (which is physically expected) and justifies the use of more advanced MCMC algorithms like
HMC for the efficient solution of such problems. Additionally, the true solution marked as a diamond is well
captured by both the 1-D and 2-D marginals, indicating the correctness of the method.

The effect of different choices of the reference configuration is shown in Fig. 5. The inverse analysis is carried

out by choosing the reference configuration boundary to be infinitesimally perturbed, § = (0.001, O'Ogi), from the

actual boundary in Fig. 5(a). At the end of 11 leapfrog steps (arbitrarily chosen) in the forward direction, the
momentum is reversed i.e. p = —p and the leapfrog steps are again executed 11 times with the same step size.
There is a perfect match between the forward and reverse trajectory at every step which indicates the correctness
of the remeshed reference domain based reversible proposal. To show that the update from the previous step is not
reversible, the remeshed reference domain boundary is chosen to be the boundary at the previous step. As shown
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in Fig. 5(b), the reverse trajectory in red deviates from the forward trajectory and the condition of reversibility is
not exactly met.
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Figure 4. Marginal posterior distributions for different components of the parameter vector 6. The light grey circles represent
thinned samples (every 5" sample) obtained after burn-in from HMCSISFD. Dark grey contours indicate the 50% and 95%
High Probability Density (HPD) regions. The cross mark represents the HMC mean, and the blue diamond represents the true
value of the parameters. Pearson correlation coefficient between representative parameters is denoted by r. (Magnitudes are
in m)

5 Conclusions and discussions

To develop parameter updates for general geometric inverse problems, it is argued that remeshing is a necessity to
maintain a good mesh quality. This paper highlights a method to include remeshing into HMC updates, while also
ensuring continuity of the Hamiltonian and reversibility of the proposal. The method relies on choosing slightly
perturbed reference domain boundaries from the already available boundaries at each step. These slightly perturbed
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Figure 5. Leapfrog trajectories in 8; — 8, space when remeshed reference configuration is parameterized as (a) 87 =
0(t+¢)+ 8 with8 = (0.001, 0'001/ 3) and (b) 87¢ = 0(t). Blue line with diamond markers indicates the forward
trajectory and the red line with circle markers indicates the reverse trajectory.
domains are then remeshed and the mesh moving method is used to perform infinitesimal displacements of the
entire mesh to yield the HMC gradient. The performance of the method is validated on a synthetic example and
the deterministic leapfrog trajectory is shown to be exactly reversible as opposed to that updated from the previous
step. More studies need to be conducted to understand the effect of non-reversibility of the trajectory on the
posterior. Initial results (not shown in this paper) indicate little to no change in the posterior for the two different

cases shown in Fig. 5(a) and Fig. 5(b). This result is intriguing and will be explored in the future.
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As the reference domain boundary can be set to be a slightly perturbed version of the domain boundary already
available at the next time step, the remeshed reference domain-based method possesses significant potential for
application to trans-dimensional problems (Green 1995), where the dimensionality of parameter space can change.
New discontinuities can be added or removed from the domain easily, all while the Hamiltonian is kept continuous,
enabling efficient computation of HMC gradients. This opens up an exciting avenue for research which will be
pursued in the future.
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