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Abstract: This paper presents Bayesian regression models for predicting undrained shear strength from piezocone penetration
test (CPTU) measurements. A database of laboratory tests from high-quality block samples in clays and the corresponding
CPTU measurements are re-analyzed. Attention is paid to reporting and communicating the results of regression analyses,
particularly statistical parameter uncertainty, a task that is often performed poorly in geotechnical engineering literature. Four
regression models are fitted to the data, and some preliminary goodness-of-fit checks are discussed. Furthermore, the predictive
accuracy of the models is compared. The models are then used in an example of predicting undrained shear strength from
CPTU data at a new location. It is discussed how such probabilistic predictions relate to the notion of characteristic values
prescribed in geotechnical design standards. Finally, updating regression models based on site-specific data is briefly discussed.
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1 Introduction

Bayesian methods have been used for predicting undrained shear strength of clays from effective stress and
laboratory test data (e.g. Cao and Wang 2014). More recently, and with increasing availability of the piezocone
penetration test (CPTU), CPTU-based empirical relationships are gaining popularity in practice. However, more
often than not, the results of statistical analyses of such data is communicated inadequately in the literature; best-
fit values for regression coefficients and residual standard deviations are usually reported but statistical parameter
uncertainty is overlooked (e.g., Karlsrud et al. 2005; Mayne and Peuchen 2018; Paniagua et al. 2019).
Quantification and propagation of these uncertainties is crucial for probabilistic engineering design and risk
assessment in general, and for deriving characteristic/representative profiles that comply with modern design
standards such as EN 1997 (CEN, 2004) in particular. This is also essential for combining site-specific data and
generic correlations in a Bayesian framework (e.g. Bozorgzadeh et al., 2019; Ching et al., 2021).

In this paper, using Bayesian regression models, we re-analyze a database of laboratory tests from high-quality
block samples in clay and the corresponding CPTU measurements. The database includes information from
multiple sites with comparable ground conditions, primarily from Norway. Multiple regression models are fitted
to the database relating the undrained shear strength S.€, obtained from anisotropically-consolidated undrained
triaxial compression tests (CAUC), to CPTU measurement data such as the net cone resistance guer, and the
effective pore pressure response Au. Water content w obtained from index lab testing is also used as a predictor in
one of the regression models. The paper is organized as follows. Section 2 introduces the data and the empirical
correlations. Section 3 reports the results of the regression analyses. Section 4 compares the fitted models and
presents an example of probabilistic predictions of undrained shear strength for a new CPTU profile, and then
discusses model updating based on site-specific data.

2 Database and empirical equations

The database contains laboratory test results from high-quality block samples prepared using the Sherbrooke block
sampler (Lefebvre and Poulin, 1979) and the corresponding CPTU measurements on soft to medium stiff clays.
The database has evolved throughout the years (Karlsrud et al. 2005; Karlsrud and Hernandez-Martinez 2013) and
was most recently described by Paniagua et al. (2019). In its present form, the Paniagua et al. (2019) database
contains 61 samples from 19 sites, primarily from Norway.

Except for updating the values of Au for two samples, the database analyzed in this paper is identical to
Paniagua et al. (2019). All samples in the current database have a sample quality of 1 or 2 based on the criteria
described by Lunne et al. (2006). The data are shown in Figure 1 along with one of the fitted regression models
(Section 3). For more details about the data see Paniagua et al. (2019).

Paniagua et al. (2019) report different empirical equations for predicting S.¢. Here, we first re-examine a
model that includes gner, w and Au as predictors
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SC = B, X (%)Bqnet/w x AuPou (1
Three simpler variations of the above equation are also considered:

SE = Bo X @iy x AP 2)

SC = By x AuPm 3)

SE = Bo X dit” )

Egs. (2) - (4) only include CPT-based predictors. Such models are gaining more attraction in practice because
they do not rely on additional laboratory test results such as water content or plasticity index.

3 Bayesian statistical modelling

3.1 Regression models

The regression model is fitted to log-transformed data. This transformation is useful, first because S.C is
constrained to be positive, and second, because larger values of S.€ exhibit larger variance (e.g. Fig 1b). Therefore,
fori=1,2, ..., 61 data points the regression model is:

ln(s‘g[i]) = ppp + € = In(Bo) + Banetjw X (ln(qnet[i]) - ln(W[i])) + Bau X ln(Au[i]) + &3 (52)

where p is mean log-transformed S.¢ and defined as a linear function of the predictors: In(gner) - In(w) and
In(4u). When fitting the linear regression, the mean of each predictor is subtracted from them, i.e. the predictors
are mean centered. So, the regression model becomes:

In(sgp) = In(Bo) + Banetyw X (I(@neepy) — 6.09 — In(wy;) — 0.89 )

The constant term In(f,) in the centered model has a physically appealing interpretation: it is the average
In(S$) when the predictors are set to their averages. The mean-centering also removes the correlation between the
intercept In(f,) and the coefficients of the predictors (i.e. the slopes) of the linear regression model. For
comprehensive discussions about centering and scaling predictors and response variables in regression analysis
see e.g. Gelman et al. (2020).

The es are assumed to be normally distributed errors with mean zero and unknown standard deviation Gin(suc)
(hereafter o for brevity):

&;~Normal (0, Gzn(sﬁ)) (5¢)

The model parameters (i.e. In(Bo), Banevw, P4x and o) are assigned vague prior distributions that convey little
information (relative to the data) so the posteriors are essentially not affected by them. The regression models
based on Egs. (2) - (4) are formulated similar to the regression model of Eq. (5) but are not stated here due to
limited space. All models are fitted using the probabilistic programming software Stan (Stan development team,
2019) which uses Markov chain Monte Carlo to simulate from the posterior distributions of the parameters of the
model.

3.2 Results

A common visualization of linear regression with two or more continuous predictors is plotting the fitted model
against each predictor while the other predictors are held at their average values. This allows a visual examination
of the average effect of the predictors on the response variable one at a time. Such visualizations can be shown on
either the log-log scale or the original scale of the data.

Figure 1 shows two examples of this for the regression model of Eq. 5. Figure la shows mean In(S,°) vs.
In(4u), and can be interpreted as follows. For a clay with g of about 444 kPa (corresponding to the mean In(gner)
of 6.09 in Eq. 5b) and w of about 0.41 (corresponding to mean In(w) of —0.89 in Eq. 5b), a unit change in In(4u)
corresponds to an average increase of 0.67 in In(S.€) (see
By in Table 1). Figure 1b shows mean S, vs. gnenw; plotting on the original scale of the data might be more
familiar to engineers, but the non-linearity of the regression curve does not allow the straightforward interpretation
permitted on the log-scale. Figure 1 also shows the pointwise 95% credible interval for posterior mean and the
95% posterior predictive interval for the response variable. Additional visual summaries of the regression model
of Eq. 5, and visual summaries for the other regression models are not provided here due to limited space.
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Table 1 gives posterior summary statistics for all regression models. The posterior means can be thought of
as best estimates with posterior standard deviations quantifying the associated uncertainty. As mentioned earlier,
uncertainty in estimates is usually not reported in the geotechnical literature. Aside from the fact that these are part
of the fitted model and should not be overlooked, they are particularly crucial for predicting the "mean" response
(here, mean S,€) in design situations where the average geotechnical parameter is of interest. Furthermore, it
should be noted that estimated regression coefficients can be correlated, and this should also be reported. As
mentioned earlier, mean-centering of predictors removes the correlation between the intercept and the slopes. For
the  regression model of Eq. (5), the correlation coefficient between  Bgnesy  and
Pay is —0.86, and for the model based on Eq. (2), the correlation coefficient between .. and
By 1s —0.81. Another instance where complete reporting of regression results is important is when one wants to
formulate prior distributions based on published models but does not have access to the original data. This is not
possible if only the point estimates are reported.

Table 1. Posterior summary statistics.
Parameter

EQ~ In(By) *Banet Bau a
mean(sd 95% CI mean(sd 95% CI mean(sd 95% CI meansd 95% CI

1 37800 (3.74,381) 027005 (0.16,039) 0.6700s (0.51,0.83) 0.13001, (0.11,0.16)
2 37800 (3.74,381) 028000 (0.11,046) 0.7900s  (0.63,0.93) 0.1400n (0.12,0.17)
3 37800, (3.74,3.81) - - 0.99(0.05)  (0.89,1.08)  0.15001, (0.13,0.18)
4 37800y (3.723.84) 103000 (0.85,1.20) - - 0231002 (0.20,0.28)
F

* For model in Eq. (1), this is Bgnetw

Figure 2 shows the standardized residuals of In(S,¢) for all regression models. For each model. it is expected
that 95% of the residuals (about 58 out of 61) lie within (—1.96, 1.96) which is the 95% probability range for a
standard normal distribution. This is the case for all four models. The 9th observation is particularly interesting
because it seems to be an outlier (i.e. has a low probability of occurrence) according to all models. No obvious
problems could be associated with the measured values for this data point from a preliminary investigation of the
lab and CPTU data. The regression model could be improved to account for this observation, e.g. by replacing the
normal error (Eq. 5¢) with a heavy-tail student #-distribution. Such improvements are not pursued in this paper; an
example could be found in Bozorgzadeh and Bathurst (2019).
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Figure 1. Example visualizations of the fitted regression model of Eq. (5).



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR) 475

e 4 55=ﬁo (q"” YBanet /W % pyPou

@i r = B XAuBAu

R g t #

R T TOVCAL TN F VIS A L

.'5 ¢ ¢ :’ ¢+ t # ﬂ t* ¢+

PRI |

s, S§ = fo X gl sl

@ 0 5 10 15 20 25 30
Data index

%)E 4

il #

@]

° # i # ¢

T 0 B Y * k ¢ ¢

T AL AN “**Mﬂ** "#H# R

T _

CE 35 40 45 50 55 60 65
Data index

Figure 2. Standardized residuals of In(S.) from the four regression models.
4 Model comparison and example predictions of S,¢ from new CPTU data

In the Bayesian framework, predictive accuracy of models can be compared using different methods as discussed
by Gelman et al. (2013) and summarized by Bozorgzadeh and Bathurst (2019) in the context of geotechnical
applications. Here, we use the leave-one-out information criterion (LOOIC) which is a log-likelihood based
measure of goodness-of-fit. Calculating the exact LOOIC requires excluding data points one at a time from the
analysis, fitting the model to the remaining n-1 data points, and using the resulting posteriors to evaluate the log-
density of the left-out data point; this is computationally expensive. Vehtari et al. (2017) introduced an efficient
computation of LOOIC using Pareto-smoothed importance sampling where it is possible to estimate LOOIC based
on simulations from the posteriors obtained using all the data.

Table 2 reports the values of LOOIC and approximate standard errors estimated using this method. Smaller
LOOIC indicates higher predictive accuracy, so the first model seems to be the most accurate. However, the
difference in LOOIC for the second model is less than two standard errors away from zero, and the third one about
two standard errors away from zero, indicating that these models should not be necessarily ruled out. The model
with qnet as the only predictor has considerably less predictive accuracy. This model also has a larger residual
standard deviation compared to the other three models (see Table 1). This is in agreement with general findings of
Karlsrud et al. (2005). This model is not suggested for predictions.

Table 2. Model comparison.

Difference* in

Empirical equation LOOIC sk LOOIC k)
Szf =B X (M)ﬁq"“/w x AuPou _73-93(8.78) 0.0(0,0)
S = o X qf:;‘” X Aubeu ~64.20(11.19) 9706
Sii = Bo x dul —56.29(10.53) 17.6s.6)
515 = By X quer _2~72(9.99) 71 ~2(8.4)

* Difference from LOOIC of the first model

The fitted regression models can be used to predict S.¢ of a new location, i.e., to transform a CPTU profile
(and the water content data) to distributions of S,¢. For demonstration, a clay site outside Stockholm in Sweden
(Hov and Garcia de Herreros, 2020) is selected where CPTU measurements are available. The parameter ranges
for the predictors at this new site are within the envelope of parameters in the database used to fit the regression
models (gner:143-437 kPa, Au: 162-347 kPa, w: 0.45-0.65). Other index parameters for the clay such as plasticity
index, although not used in the regression models, are also within the envelopes found in the database. Thus, it is
reasonable to assume that the new site falls within the domain of applicability of the regression models.

Starting with regression model of Eq. (5), the dark-shaded range in Figure 4a is the 90% probability interval
for mean S.C; this uncertainty stems from uncertainty in the regression parameters. The light-shaded range is the
90% predictive interval, i.e. predictions of yet-to-be-observed values of S.¢. The boundaries of the shaded ranges



476 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

are the 5™ and 95" percentiles of the distributions of mean S.© and S.€, and are of interest because they correspond
to definitions of characteristic values in modern geotechnical design standards such as EN 1997 (CEN, 2004).
Therefore, the lower bounds of the dark- and light-shaded areas are the characteristic S, profiles for design
situations (limit states) where large and small ground volumes are involved, respectively.

To prevent visual clutter, yet allow for some form of visual comparison, predictions from the other models
are shown at few selected depths as error bars. For each error bar, the central range marked by a thicker line is the
90% interval for the mean (comparable to dark-shaded) and the range represented by the thinner line is the 90%
predictive interval (comparable to light-shaded). The model with both gner and Au gives predictions that are
approximately the same as the first model. The model with only 4u gives slightly higher predictions, and the model
with only gne: predicts lower S.¢ and is also the most uncertain. If the difference between predictions from different
models is judged to be important from an engineering perspective, rather than relying on a single (best) model,
model averaging can be used. Exploring this is beyond the scope of this paper; Bozorgzadeh and Bathurst (2019)
discuss Bayesian model averaging for geotechnical applications.

For the selected new location, in addition to CPTU, undisturbed sampling using the mini block-sampler
(Emdal et al. 2016) was performed. Figure 3 shows S.¢ from five CAUC tests that were performed on specimens
between 4 to 8 m depth. All measurements fall within the 90% predictive distributions of the four regression
models.

Undrained shear strength, S © (kPa) Undrained shear strength, S © (kPa)
0 20 40 60 0 20 40 60

Posterior 90% credible
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Figure 3. Predictions of undrained shear strength profiles for a new CPTU measurement.

The current predictions can be updated in light of the new triaxial test results. The updated profiles for
regression model of Eq. (5) are shown in Figure 3b. The updated model results in essentially the same profiles as
before. This is because the regression model assumes that given the predictors, the average undrained shear
strength for all sites is the same. The mean SuC for all sites is estimated from 61 data points; adding five data
points does not change the posterior distributions of the parameters. This assumption of identical mean SuC for all
sites can be relaxed by fitting hierarchical regression models that allow for model parameters to be site-dependent
(e.g. Bozorgzadeh et al., 2019; Bozorgzadeh and Bathurst, 2020; Ching et al., 2021). Extending the regression
models presented in this paper to hierarchical models is the topic of ongoing research by the authors.

5 Summary and conclusions

Using a previously published empirical equation for predicting undrained shear strength from CPTU data this
paper discussed better communication of regression results, particularly when it comes to uncertainties and also
making it possible for others to use a reported regression model for making probabilistic predictions or formulating
prior distributions. The paper then discussed preliminary goodness-of-fit checks of the regression models using
residuals. Predictive accuracy of four regression models was compared. The best model was used in a
demonstrative example to predict undrained shear strength at a new site where CPTU data are available. The notion
of characteristic values as described in modern design standards was discussed in the context of probabilistic
predictions from the regression models. Updating the regression model with site-specific data was briefly explored.
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The (usually not explicitly stated) restrictive assumption of identical regression parameters was discussed, and
hierarchical Bayesian modeling identified as the way forward for more efficient utilization of site-specific data.
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