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Abstract: Reliability analyses of rainfall-induced slope stability often ignore the effect of field observations, including the
observation that the slope remains stable under its natural condition and/or that the slope survives under a past extreme
rainfall event. In this paper, the BUS (Bayesian Updating with Structural reliability methods) method, originally proposed by
Straub and Papaioannou (2015), is employed to conduct Bayesian inverse analyses of spatially varying hydraulic and shear
strength parameters with the field observations. Stationary lognormal random field models are established to depict the
spatial distribution features of the hydraulic and shear strength parameters. An infinite slope model is taken as an example to
evaluate the probability of slope failure under a target rainfall event within the framework of Monte-Carlo simulation. This
analysis allows incorporating the field observations to evaluate the rainfall-induced slope failure probability in spatially
variable soils. The research outcomes can provide a new perspective to understand the rainfall-induced slope failure
mechanism.
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1 Introduction

Landslide is one of the major geohazards in the world. Intense rainfall events are one of the most significant
triggering factors of catastrophic landslides. Rainfall infiltration leads to an increase in water content and unit
weight of the soil, which in turn reduces the shear strength and matric suction (e.g., Cho 2014; Yuan et al. 2019).
The study of Christian and Baecher (2011) reported that “the estimated probabilities of slope failure under
rainfall infiltration are at least an order of magnitude larger than the observed frequency of adverse performance”.
One possible reason for this discrepancy might be attributed to overestimation of the uncertainties arising from
soil properties, in situ measurements and modeling of infiltration process (e.g., Christian and Baecher 2011;
Jiang et al. 2022). To address this issue, the rainfall-induced slope failure mechanism and reliability problems
considering the spatial variability of hydraulic and shear strength parameters were extensively investigated (e.g.,
Cho 2014; Liu et al. 2021). Another underlying reason for this difference might lie in the fact that the field
observations, such as the slope remains stable under its natural condition and/or that the slope survives under a
past extreme rainfall event, are often ignored in the reliability analyses of slope stability (e.g., Zhang et al. 2014).
To the best of our knowledge, only Liu et al. (2021) conducted the slope reliability analysis for an existing slope
at a specific site considering both the rainfall triggering mechanism and slope’s performance records during
previous rainfall events.

To elucidate the impacts of the field observations on the failure mechanism and reliability estimate of
spatially varying slopes under rainfall infiltration, this study conducts the slope reliability analysis under a target
rainfall event based on the Bayesian inverse analysis results of spatially varying hydraulic and shear strength
parameters. The event that the slope survived under a past rainfall triggering event is treated as the field
observation, which is used in the Bayesian inverse analysis.

2 Bayesian inverse analysis of spatially varying soil parameters

Bayesian methods can incorporate the field observations to improve the quantification of the uncertainties of soil
parameters. This process is implemented through estimating the posterior distribution of soil parameters given
the field observations. According to the Bayes’ theorem, the posterior probability density function (PDF) of soil
parameters can be calculated as (e.g., Straub and Papaioannou 2015; Jiang et al. 2018; Liu et al. 2021)

Jx (%) = al(x) fy (x) (M
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where f7(x) and f7(x) are the prior and posterior PDFs of the random variables X, X :(X . . & )T,
respectively, in which 7 is the number of random variables; x is a realization of input random vector X
describing the uncertainties of soil parameters; L(x) is the likelihood function, which is proportional to the
probability of the observation information given X = x; a is the proportionality constant, a = l/ J.Rn L(x) fy(x)dx .

To accurately model the soil spatial variability, the dimension » of X is typically large (Jiang et al. 2018).
For the evaluation of f7(x) in Eq. (1), a numerical solution is often required. In this study, the Bayesian

Updating with Structural reliability (BUS) method originally proposed by Straub and Papaioannou (2015) is
adopted. The BUS method transforms a Bayesian inverse problem into an equivalent structural reliability
problem by defining an observation information domain (x:

Q. ={p—cL(x)<0} (2)

where p is the realization of a standard uniform random variable in the interval [0, 1]; ¢ is the likelihood
multiplier, which needs to satisfy the inequality for all x, ¢L(x)<1.0. Then, the subset simulation is employed

to solve the equivalent structural reliability problem (e.g., Papaioannou et al. 2015; Jiang et al. 2018).
Because of the model error & of slope stability analysis methods (e.g., limit equilibrium method, finite
element method), the actual factor of safety (y) can be evaluated as (e.g., Depina et al. 2020; Liu et al. 2021)

y=FS(x)+¢ 3)

where FS(x) denotes the estimated factor of safety at x. For convenience, the model error, £, is modeled as a
normal random variable with mean of 4, and standard deviation of o, according to Depina et al. (2020) and

Liu et al. (2021). Of course, it can also be modeled as a multiplicative lognormal random variable (e.g., van der
Krogt et al. 2021). To incorporate the field observation that the slope survived under a past rainfall triggering
event for estimating the posterior PDFs of soil parameters, the likelihood function L(x) is established as

1.0 FS(x)— s,
O

&

L(xly > 1.0) ¢ P[& >1.0- FS(x)]=1-P[s < l.O—FS(x)]—l—@[ (4)

where @(.) is the standard normal cumulative distribution function (CDF). Thereafter, the posterior distribution,

including the posterior statistics (means, standard deviations and coefficients of variation), of spatially variable
soil parameters can be calculated using the BUS method with subset simulation. Based on these, the slope
performance, including seepage, stability and reliability, under a future target rainfall triggering event can be
readily evaluated.

3 Probabilistic slope seepage and stability analysis under rainfall infiltration

Rainfall-induced landslides are usually characterized by shallow failure modes that develop parallel to the slope
surface. The depth of slip surface is around 1-3 m, which is much less than the slope length (e.g., Cho 2014;
Zhang et al. 2014). The slope seepage and stability under rainfall infiltration are typically evaluated through an
infinite slope model, as shown in Figure 1. A one-dimensional water flow model is used to simulate the vertical
rainfall infiltration process on the slope. The governing equation of water flow on the slope can be described by
Richards’ equation, which is expressed as (Cho 2014)

%:ﬁ{(@—cosajk} )
ot oz|\ oz

where @ is the volumetric water content, & €[6.,6.], in which 6 and 6 are the saturated and residual

volumetric water contents, respectively; « is the slope angle; 4 is the pressure head; z is the depth of soil slice; &
is the hydraulic conductivity, which is estimated from the saturated hydraulic conductivity (ks) through a soil-
water characteristic curve (SWCC). The commonly used van Genuchten-Mualem model (van Genuchten 1980)
is chosen as the SWCC to simulate the relationship between the soil water content, hydraulic conductivity and
the matric suction. The Hydrus-1D software is employed to perform the unsaturated seepage analysis under the
rainfall infiltration. The distributions of pressure head and pore water pressure along the depth for each time step
can be obtained by taking the realizations of random field of 4, as inputs in the SWCC. Then, the factor of safety
of the infinite slope based on the Mohr-Coulomb failure criterion can be calculated as (Cho 2014)

’

FS= (6)

W sin  cos a
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where ¢’ and ¢' are the effective cohesion and friction angle, respectively; ¥ is the total weight of soil at the
depth z; o, is the total stress due to the self-weight of soil, o, = 7,zcos’ &, in which y, is the total unit weight
of soil; u, is the pore air pressure; o, is the suction stress, which can be estimated as

Sy, <0
GY — L’,W uH/ (7)
’ u u, >0

wo

where S, is the effective degree of saturation; y is the matric suction, y=u,6 —u, , in which u  is the pore
water pressure.

Figure 1. Infinite slope failure model.

To consider the change of soil weight due to the moisture content under the rainfall infiltration, the W of
soil is estimated by integration of the unit weight y, in the vertical direction from the slope surface to the

potential slip surface (Cho 2014). Based on these, the point-wise probability of failure (py) of slope for different

rainfall durations # can be calculated in the framework of Monte-Carlo simulation (MCS) as follows:

1.0-FS(x,t)— u,
o

&

p/,(t)zp[FS(x,z)+g<1.o]=q{ }z%ZN:I[FS(x’,t)+gi<1.OJ (®)

where N is the number of MCS samples; x' and &' are the i-th realization of the random fields of soil hydraulic
and shear strength parameters (ks, ¢’ and ¢') and model error, respectively; I(.) is the indicator function. Note
that it is assumed that the model errors at the observation and failure event are independent, in which case the
model error is not learned for estimating the posterior failure probability in Eq. (8) and the information can only
be used to learn the random field parameters.

4 Illustrative example

Shallow failures are commonly observed for the slope under the rainfall infiltration, thus the infinite slope model
in Figure 1 that has been studied by Liu et al. (2021) is employed here to explore the effect of the field
observation on slope reliability estimate. As shown in Figure 1, the infinite slope has an angle of o = 35° and a
vertical soil thickness of H = 2 m. The soil layer is initially unsaturated with a uniform matric suction. The
bottom of the soil layer is underlain by an impermeable layer. The values of soil physical and mechanical
parameters are summarized in Table 1.

Table 1 Values of soil physical and mechanical parameters.

Soil parameters Values Soil parameters Values

Saturated hydraulic conductivity &, 2.0x10"° mm/s Initial matric suction 10 kPa
Saturated volumetric water content ¢, 0.469 Residual volumetric water content 6, 0.106
SWCC fitting parameter a 9.245 kPa SWCC fitting parameter n 1.395
Effective friction angle ¢ 320 Effective cohesion ¢’ 5 kPa

Unit weight of dry soil y, 16 kKN/m3 Unit weight of water y, , 9.8 kKN/m?>
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4.1 Bayesian inverse analyses of spatially varying soil parameters

First, deterministic seepage and stability analyses of the slope under a past rainfall event are conducted. Figure 2
shows the past rainfall event with hourly patterns and a total cumulative rainfall of around 220 mm at the slope
site. It is obvious that the distribution of rainfall intensity over the time is not uniform. The Hydrus-1D software
is then adopted to numerically evaluate the distribution of pore water pressure under this past rainfall event. To
account for the impact of rainwater redistribution on the slope stability, a total of 240 h (10 days) is considered
for analysis. Figure 3 shows the variations of the pore water pressure along the depth for different time steps. As
observed from Figure 3, the matric suction is reduced to zero at the ground surface after a short duration of
rainfall in Figure 2. After the rainfall finishes at the time of 18 h, the rainwater continues to infiltrate the slope
and eventually reaches the impermeable layer under the rainwater redistribution. The vertical profile of pore
water pressure almost keeps unchanged when the time reaches 240 h. Based on the obtained pore water pressure
results, the factor of safety can be readily calculated using Eq. (6). Figure 4 presents the variation of the factor of
safety with the time under the past rainfall event. It can be seen that the factor of safety also reaches convergence
at the time of 240 h. This is because the rainwater has been sufficiently infiltrated and gathered at the
impermeable layer.

To account for the influence of the inherent spatial variability of soil properties, the saturated hydraulic
conductivity ks, effective cohesion ¢’ and effective friction angle ¢’ are modeled as stationary lognormal
random fields. The slope profile is discretized into a total of 40 soil layers with a thickness of 0.05 m. Following
Cho (2014) and Liu et al. (2021), ks, ¢’ and ¢ are considered to obey lognormal distributions with means of
2.0x10° mm/s, 5 kPa and 32°, and Coefficients of Variation (COVs) of 0.6, 0.3 and 0.2, respectively. The
Karhunen-Loéve (KL) expansion method (Cho 2014) is utilized to generate the realizations of the random fields
of ks, ¢’ and ¢’ for each soil layer. The squared exponential autocorrelation function with a vertical
autocorrelation distance of 0.5 m is adopted. It is found that the random field discretization can meet the
accuracy demands when the number of KL expansion terms to be retained is chosen as 5 for each random field.
Then, the direct MCS with N = 100,000 samples is used to estimate the probability of slope failure under the past
rainfall event using Eq. (8). As observed in Figure 5, the probability of slope failure increases from 5.7% to 45%
under the rainwater redistribution, eventually reaches convergence at the time of 240 h.
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Figure 3. Distribution of pore water pressure under the

Figure 2. A past rainfall event (adopted from Liu et al. 2021). past rainfall event
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Figure 5. Variation of the probability of slope failure
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According to Depina et al. (2020), the model error ¢ in Eq. (3) is assumed to follow a normal distribution
with mean x, = 0 and standard deviation o, = 0.05. The likelihood function incorporating the field observation
that the slope survived (FS > 1.0) under the past rainfall event in Figure 2 is established using Eq. (4). The BUS
method with subset simulation is then adopted for the Bayesian inverse analyses of spatially varying soil
parameters (ks, ¢’ and ¢'). Herein, a total of 120 random variables are involved. To ensure sufficient
exploration of the posterior distribution, 2,000 subset samples with a conditional probability of 0.1 for each
subset level are adopted. Furthermore, 10 independent subset simulation runs are carried out, and the average
calculated results across the 10 independent runs are used in the subsequent analyses. Figure 6 compares the
prior and posterior PDFs and CDFs of ks, ¢’ and ¢’ at the depth of z=1.975 m. It can be found from Figure 6,
the variation in the probability distributions of s and ¢’ is much smaller than that of ¢', indicating that the ¢
has a greater effect on the slope stability. Figures 7 and 8 further compare the prior and posterior means and
COVs of ks, ¢’ and ¢’ along the depth, respectively. As observed from Figures 7 and 8, the posterior means and
COVs of ks, ¢’ and @' vary along the depth, which confirms that the stationary random fields of three soil
parameters have been updated as non-stationary random fields. The posterior means of ks along the depth are less
than the corresponding prior mean, particularly close to the ground surface, while the posterior means of ¢’ and
@' along the depth are greater than the corresponding prior means, particularly close to the impermeable layer.
Moreover, as seen from Figure 8, the posterior COVs of ks, ¢’ and ¢’ along the depth are all less than the
corresponding prior COVs (i.e., 0.6, 0.3, and 0.2), respectively. This implies that the Bayesian updating with the
field observation effectively reduces the uncertainties and obtains more realistic statistical information of soil
parameters.
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4.2 Reliability analysis of slope under a target rainfall event

Based on the updated statistical information of soil parameters in Section 4.1, deterministic and reliability
analyses of the slope seepage and stability under a target rainfall event are carried out. Figure 9 shows the target
rainfall event with duration of 18 h and a total cumulative rainfall of 241 mm. The variations of the pore water
pressure along the depth for different time steps under the target rainfall event for the posterior mean of & are
similar to those in Figure 3. The factors of safety for different time steps estimated using Eq. (6) based on the
posterior means of soil parameters are also plotted in Figure 4. As seen from Figure 4, the factors of safety under
the target rainfall event are larger than those under the past rainfall event. Furthermore, the posterior probability
of slope failure is readily evaluated using the MCS in Eq. (8) based on the obtained 107,620 posterior samples of
soil parameters (ks, ¢’ and ¢"). Figure 10 compares the variations of the prior probability of failure and the
posterior probability of failure conditional on the field observation with the time. The posterior probability of
slope failure that incorporates the field observation is close to zero (1.58x10*) at the beginning of target rainfall
event and increases to 14.06% at the time of 240 h. As seen from Figure 10, the probability of failure will be
significantly overestimated if the field observation is ignored, especially at the beginning of target rainfall event.
This aligns well with the observation that the estimated probability of slope failure is always larger than the
actual observed landslide probability as indicated by Christian and Baecher (2011). Moreover, the proposed
framework is efficient in the computation. The computational time taken for the Bayesian inverse analysis and
the estimate of posterior probability of failure under the target rainfall event is 32.4 h and 28.7 h, respectively, on
a desktop computer with an Intel (R) Core (TM) 19-9900K processor with 3.6 GHz main frequency and a RAM
of 32 GB.
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Figure 10. Variation of the probability of slope failure

Figure 9. A target rainfall event (adopted from Liu et al. 2021). with the time

5 Conclusions

In this paper, the influence of the field observation that the slope survived under a past rainfall triggering event
on the identification of soil parameters and reliability estimate of slope stability is addressed. First, the Bayesian
inverse analyses of the spatially varying hydraulic and shear strength parameters are conducted using the BUS
method with subset simulation. Then, the slope reliability under a target rainfall event is evaluated based on the
updated statistical information of soil parameters. For the considered infinite slope example, the effective friction
angle has a greater effect on the slope stability. The probabilities of failure will be overestimated more than one
order of magnitude if the field observation is ignored, especially at the beginning of the rainfall. The reason that
the estimated probabilities of slope failure are usually larger than the observed frequency of adverse performance
is due to overestimation of the uncertainties of soil parameters.
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