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Abstract: The spalling behavior is considered as a representative failure mode involved in the hard rock surrounding the
deep tunnel, which has a strong influence on the resulting safety of tunnelling operations. Since the stability design for such a
type of the deep hard rock tunnel is a significant aspect of geotechnical community dominated heavily by the inherent
uncertainty, it is desirable to employ the reliability methods (via the reliability index or probability of failure) to produce
meaningful results in a logical and realistic fashion. With the tremendous development of those reliability methods, the
current design standards have an increasing tendency to guarantee stability of geotechnical structures by prescribing a target
reliability index. This manifests that the reliability level of a deep hard rock tunnel is pre-defined as a target to be fulfilled. In
this scenario, an inverse-reliability strategy is proposed to solve the stability problem of the deep hard rock tunnel. The basic
idea behind this strategy is to, when knowing the target reliability index, how to back-calculate the design variable involved
in the process of stability analysis to ensure the acceptable level of the pre-set reliability. In conformity with this strategy, an
inverse first-order reliability method (IFORM) is developed and its solution procedure is also summarized. By using a typical
example of the deep hard rock tunnel, the computational accuracy and efficiency are both verified in identifying the design
variable pertinent to the spalling behavior. On this basis, its associated stability design is implemented, considering various
levels of the target reliability index in the analysis process. By dint of the presented IFORM, the design variable relevant to
the spalling behavior can be adjusted conveniently, thus providing effective guidelines which are found to be in accordance
with the practical situations for the stability design of the deep hard rock tunnel.
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1 Introduction

Tunnelling in the hard rock presents one special challenge, especially as the depth is increased, to the
geotechnical researchers and practitioners, since the deformation process of the hard rock under a high-stress
condition is dominated by a typical stress-induced brittle failure of the surrounding rock, called the spalling (or
slabbing) behavior (Fairhurst and Cook 1966; Martin et al. 2003; Martin and Christiansson 2009). Such behavior
usually occurs on the tunnel sidewalls at a certain distance in the form of rock slab-strip running parallel with the
advancing tunnel face, which results, to a great extent, in a complete collapse and has a strong impact on the
long-term stability of the deep hard rock tunnel (associated with some unconventional failure phenomena, like
the V-shaped notch and the strain rockburst) (Hoek et al. 1995; Hoek and Brown 2019). As a consequence, the
so-called spalling behavior pertaining to deep underground excavations in the hard rock poses a serious threat to
the safety of tunnelling operations (e.g. when installing the support structures).

In order to investigate the mechanism of the sidewall spalling in the deep hard rock surrounding the
advancing tunnel, and then provide informative guidelines to prevent the spalling-induced failure events, a
number of studies on this topic have been reported in the literature and the reader may refer, among many others,
to those analyzed experimentally (e.g. He et al. 2010; Jiang et al. 2017; Wu et al. 2020) and numerically (e.g. Cai
2008; Hou et al, 2013). It is worth stressing that the spalling behavior and the resulting failure phenomena may
actually be considered to constitute an evaluation of the extremely serious stability risk for deep underground
excavations in the hard rock (Read 2004). In this sense, the assessment of stability (or safety including strength
and serviceability) for the deep hard rock tunnel in practice entails a large extent of many extraneous
uncertainties. However, the existing studies mentioned above, often classified as the deterministic method to
explore the rock spalling behavior, cannot explicitly reflect those uncertainties involved in the deep hard rock
tunnel. It is therefore desirable to adopt a reliability-based method within a probabilistic framework to take the
uncertainties into account in a more logical and realistic manner. In general, the reliability-based method with the
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reliability index (or the probability of failure) should be regarded as a useful supplement to the conventional
deterministic method.

As of this date, the concepts and principles of the reliability-based method on tunnels and other structures
relevant to underground excavations have been progressively developed, and this development have given an
impetus to designing such structures for evaluating the stability. In particular, the current design standards in
geotechnical engineering have an increasing tendency to ensure the stability by pre-defining a target reliability
index, implying that the reliability level is decided first as a target to be fulfilled. Specifically, let an unknown
parameter be a design variable, one wishes to find a certain value of this design variable such that the reliability
index becomes a target value in estimating the stability. That is, when the target reliability index is known, an
attempt is made to seek one effective route to back-calculate the design variable during the process of stability
analysis in order to ensure the desirable level of the pre-designated reliability. Such an issue can be referred to as
the “inverse-reliability” problem compared with the widely recognized “forward-reliability” problem aiming to
compute the reliability index (or the probability of failure) when knowing statistical knowledge on the random
variables. Notice that to cope with the “inverse-reliability” problem, one could of course employ the trial-and-
error scheme in an iterative way based on the conventional “forward-reliability” analysis: the unknown design
variable is selected to fall within a certain range until the reliability index calculated corresponds exactly to the
required target value. Nevertheless, it should be stressed that in most environments, this type of trial-and-error
schemes is quite tedious because of the tremendous computational cost, and more importantly, some numerical
difficulties usually occur in conducting the repetitive “forward-reliability” analysis (Der Kiureghian et al. 1994;
Li and Foschi 1998).

Considering the potential inadequacies of this treatment, an “inverse-reliability” strategy is established as a
direct and transparent way of identifying the unknown design variable when the target reliability is pre-specified.
Note that the analysis pertinent to the “inverse-reliability” has its origin in an early work of Birger (1970), who
dealt with an inverse measure of the cumulative distribution functions with respect to the stochastic variables. Up
to now, investigations performed over the past five decades on its applications have merited extensive studies for
structural engineering designs (e.g. Balu and Rao 2012; Fontaine et al. 2013). However, partly because of
unfamiliarity and technical language barriers, the research on the “inverse-reliability” has not attracted much
attention on geotechnical applications. From authors’ knowledge, only sporadic work recently appears on the
application to geotechnics, say, the cantilever sheet pile walls (Babu and Basha 2008), the strip footing and the
earth slope (Ji et al. 2019), as well as the shallow tunnel face (Ji et al. 2021). Also, the author and co-worker
suggested, in a form of Abstract, using the concept of “inverse-reliability” as a potential way of solving
tunnelling problems in rock engineering (Li and Li 2016), but did not extend this subject to real-world
applications in detail. This is what has inspired the current study.

In this context, we here explore an initial application of the “inverse-reliability” strategy to handling
stability design of the deep hard rock tunnel involving the spalling behavior. As a first step in this direction, an
inverse first-order reliability method (IFORM) is introduced and its corresponding solution procedure is outlined.
Then the present work is carried out with a typical example of the deep hard rock tunnel connected with the
spalling behavior, where the computational accuracy and efficiency of the IFORM itself are both validated in
determining the design variable; on this basis, the stability design is further implemented, in view of different
levels of the target reliability index in the analysis process.

2 Basic Concepts of “Inverse-Reliability” Strategy

2.1 Presentation of [IFORM
As elucidated earlier, the emphasis for the “inverse-reliability” strategy is mainly placed on the issue on how to
reasonably identify the unknown design variable, provided a given target reliability is reached. According to
such a strategy, we here give an outline of the IFORM; for more detailed exposition, please refer to Der
Kiureghian et al. (1994), and Li and Foschi (1998).

First, given a target reliability index /3, the analysis process of determining an unknown design variable w is
formulated as

Provided B, Find: w, Suject to: min(UTU) = B2 and G(U, w) = g(X, @) =0 €]

where U = (u1, u2, ..., i, ..., ux)" is a vector of the standard normal variables acquired from a one-to-one
mapping U = U (X), and X = (x1, x2, ..., Xi, ..., Xs)| is a vector consisting of multiple » basic random variables.
2(X, w) and G(U, w) denote the performance functions in the original space and the standard normal space,
respectively, and G(U, w) is considered to be the transformation of g(X, w) from the original space to the
standard normal space.

Knowing the analysis process summarized in Problem (1), we now have the possibility to develop the
equations used to calculate the vector U (at the design point in the standard normal space) and the target
reliability index f:. This can be, respectively, expressed by Egs. (2) and (3) given as follows:
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U= {[(VUGT (U.))U]/[VG" (U, 0)-V,G(U, a))]} VG (U, 0) @)

B = —[(VUGT (U, w))U]/[VUGT (U, 0)-V,G(U, a))]% 3)
where V,G= (6G/6u] ,0G/ou,,L. ,0G/ou,,L , 8G/8un), which signifies the gradient of G in regard to U.

From Egs. (2) and (3), we obtain the following relationship between U and S
U=-4[V,G(U, a))]/[vUGT(U, ®)-V,G(U, a))]% )

Combining this result with G(U, w) = g(X, w) = 0 in Problem (1), we then expand the performance function
G(U, w) in the standard normal space into a Taylor series around wo (an initial value assumed in seeking the
desirable w)and then disregard the higher order terms, namely, truncate it with the first-order term, a linear
approximation of G(U, ) at wo is hence found to be

8G(U,60)|wO (0-,)=0 %)

Eq. (5) can further be rearranged to obtain the design variable @, whose representation is written in the
following form:
0G(U, »)

wsz—G(U,wo)/ Py (6)

Notice that to find a solution to an acceptable w, a special iterative scheme based on Egs. (4) and (6) is
necessary. This issue will be addressed in a subsequent subsection.

G(U,0)~G(U,a,)+

2.2 Solution procedure for IFORM

For the solution procedure corresponding to the IFORM, it can be done in virtue of the following steps:
(a) Specify an initial pair (wo, Us), in which Uy usually takes the mean values;
(b) Calculate the gradient V; G and oG (U, o) /aa,|”U , respectively;

(c) Attain a new vector U according to Eq. (4);

(d) Obtain a new wo value by means of Eq. (6);

(e) Substitute the obtained wo into Eq. (4) to acquire an upgrade of U via successive iterations until the
difference between the pairs (w, U) with respect to the previous iteration lies within a small pre-defined tolerance
¢ (varying from 10~ ~ 10-3) of the current one.

3 Illustrative Example of Deep Hard Rock Tunnel Involving Spalling Behavior

3.1 Background

For the purpose of justifying the developed IFORM within the framework of the “inverse-reliability” strategy, it
is timely to conduct now the stability design related to the spalling behavior involved in the hard rock
surrounding the deep tunnel under the condition of uncertainty. As noted earlier, we here focus on an initial
application of the IFORM for deep underground excavations in the hard rock. To do so, a representative example
in relatively simplified tunnelling conditions is intended to serve an illustrative purpose. This example is selected
from the early and influential work by Sun and co-workers (e.g. Sun and Zhang 1985; Sun and Huang 1988),
who pioneered in development of the concept of “slab-rent structure” in rock mass (e.g., the slab-strip
deformation and failure caused by slab-rending of surrounding rock).

It is noteworthy that because of the formulas derivations for addressing the spalling behavior have been
specifically described in the afore-mentioned literature, we here provide the associated expression directly to
place emphasis on the subsequent demonstration of the proposed IFORM. In this example, a typical arch-strip
model was constructed to clarify a phenomenon of the slab-strip failure caused by the surrounding hard rock
spalling found to appear on the tunnel sidewalls. Based on such a mechanical model analyzed deterministically,
one limit state function g(X) = 0 accounting for the uncertainty can then be built, when the critical stress g
acting on the slab-strip layer by layer exhibited near the surface of the tunnel sidewalls touches a limiting value,
called the prescribed maximum allowable stress omax. This yields the relation

2
gX)=¢(,E,q)=0,-0,,, = l£4” ZE[ —lql sin aj -0, =0 (7)
N 2
where g(X) is the performance function and X is a random vector involving the mechanical and geometrical
parameters. Notice that /, £, and ¢ are, respectively, the height, the Young’s modulus and the dead weight of the
slab-strip. It is worthwhile pointing out that / and S are the moment of inertia and the area of the cross-section of
the slab-strip, which are, respectively, computed by 7 = b#*/12 and S = bz, in which b and ¢ are, respectively, the
unit width (i.e. 5 = 1.0 m) and the thickness of a single slab-strip. In addition, a is an intersection angle for the
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orientation of the slab-strip with respect to the horizontal direction. Apparently, since we consider the slab-strip
failure taking place on the tunnel sidewalls, it is understood that the orientation of the slab-strip and the
horizontal direction form a right angle (namely, o is taken as 90).

In our stability design for this example under uncertainty with the aid of the IFORM, the random variables
and the design variable should be first provided. For those parameters mentioned above, the height /, the Young’s
modulus E, and the dead weight ¢ of the slab-strip are commonly varied within a relatively wide range in
realistic geological environments. Therefore, such three parameters /, £ and ¢ are regarded as the random
variables, whose mean values are, respectively, 7.2 m, 40 GPa and 3.7x10* GN/m, as well as standard
deviations are, respectively, 0.576 m, 4.8 GPa, 5.55x10* GN/m based on several precedents of engineering
projects. In passing, it is mentioned that to demonstrate the “inverse-reliability” strategy in a form which can be
understood as readily as possible, the scope of our stability design under uncertainty will be limited to a
discussion of the [IFORM under the assumption that those random variables are of statistical independence with
normal distributions. Note further that the thickness 7 of a single slab-strip is intimately related to a deformation
pattern during the spalling process, which plays an important role in managing the reinforcement (or remedial
options) of the hard rock characterized by the slab-trips layer by layer. Consequently, the thickness 7 stands for
the design decision to be made could be specified as the design variable in the subsequent inverse-reliability
analysis by dint of the current [IFORM to guarantee the stability of deep underground excavations.

3.2 Examination of results

Let us now investigate the computational accuracy and efficiency of the IFORM itself in this subsection. Before
proceeding, the prescribed maximum allowable stress omax, as a limiting value in Eq. (7) should be determined.
Frequently, it may be chosen in light of the deep tunnel’s properties based on in situ observations and the
associated design guidelines. Here omax is assigned a value of 40 MPa to illustrate the following analysis.

We begin by carrying out reliability calculations in a conventional manner, that is, calculate the reliability
index in the framework of “forward-reliability”. As such, the thickness 7 of a single slab-strip, regarded as a
known parameter, is assumed to be varied as follows: 0.15 m, 0.18 m, 0.21 m, 0.24 m and 0.27 m. By using Eq.
(7), the corresponding reliability index fr (and the design point (x/, xz, x4)) for each # value can thus be obtained
(see Tablel). In the sequel, we perform the analysis of “inverse-reliability” with the help of the developed
IFORM. During the analysis process, the reliability index fr computed within the framework of “forward-
reliability” is now considered to be the target reliability index f: pre-set in the context of “inverse-reliability”
(viz., let St = pr). Notice also that the thickness 7 of a single slab-strip then becomes an unknown design variable
to be solved. In line with the IFORM’s solution procedure depicted in subsection 2.2, the thickness # of a single
slab-strip can be obtained when satisfying the pre-designated target reliability index f.

Table 1. Implementation of IFORM in context of “inverse-reliability”

Thickness ¢
of slab-strip
(m)

Forward reliability analysis Inverse-reliability analysis (5 = fr)

Desirable

Reliability
index ¢

Design point in original space
(x1 (m), xz (GPa), x4 (10*GN/m))

Design point in original space
(x1 (m), x£ (GPa), x4 (10*GN/m))

Design point in standard normal space

(ut, ue, ug)

thickness 7 of
slab-strip to be
obtained

No. of
iterations

0.15
0.18
0.21
0.24
0.27

0.732661
2.602797
4.063773
5.138037
5.898057

(7.533616, 37.897743, 3.754114)
(8.247156, 31.184264, 3.872286)
(8.584124, 24.381659,3.916751)
(8.626564, 18.463322,3.903214)
(8.509713, 13.917181,3.865922)

(7.533622, 37.897802, 3.754115)
(8.247289, 31.185443, 3.872343)
(8.586416, 24.396780, 3.917707)
(8.628346, 18.472035, 3.903931)
(8.513635, 13.931585, 3.867392)

(0.579204, -0.437958, 0.097505)
(1.818209, -1.836366, 0.310529)
(2.406973, -3.250671, 0.392265)
(2.479768, -4.484993, 0.367444)
(2.280617, -5.430920, 0.301608)

0.149999992307
0.179999953198
0.209996712239
0.239998781632
0.269993801304

= = Y

As revealed in tabular form as in Table 1, for the computational accuracy, the desirable 7 value
(corresponding to each pre-specified fr value) attained in the “inverse-reliability” analysis is very close and
almost identical to the assumed 7 value (as one known parameter) involved in the “forward reliability” analysis.
Also, the same is true of the design point values. For the computational efficiency, Table 1 lists the total number
of iterations required in performing the analysis of “inverse-reliability” to calculate the desirable ¢ for each pre-
set fi. Evidently, the presented IFORM can be economical to achieve reasonable accuracy through only 4~6
iterations.

Further, it should be emphasized that choosing an initial value of the design variable is the first step needed
in the solution procedure, as delineated in subsection 2.2. To wit, a 7 value of the thickness of a single slab-strip
is necessary to initiate the iteration during the solution process. Note that in Table 1, the initial value of the
design variable ¢ is designated as 0.1 to obtain the its desirable value and the corresponding design point for each
target reliability index f: in performing the “inverse-reliability” analysis. To examine the influence of an initial ¢
value on the final results, we assume it to be varied as 0.01, 0.1, 0.5, 1 and 2. Let us take the desirable 7~ 0.18 at
the target reliability index St = 2.6028 shown in Table 1 as an example to illustrate the implementation. Table 2
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displays the final results with varying the initial 7 values in the iteration process. As seen from this table, the
IFORM can successfully converge and yield the desirable value of # = 0.18, albeit those initial 7 values vary from
0.01 to 2. This indicates that when employing the IFORM, the selection of an initial 7 value does not impact the
final acceptable ¢ value, whereas it affects the required number of iterations, but not pronouncedly (only 5~7
iterations are needed, as seen in Table 2).

Table 2. Calculation of design variable with different initial values during iteration process

Initial value of desirable Sequence of desirable thickness 7 (design variable) to be obtained

thickness # of slab-strip 1 2 3 4 5 6 7
0.01 0.022367  0.053890  0.132603  0.167396  0.179481969512  0.179959975811  0.179999594614

0.1 0.149268  0.178656  0.179733  0.179997  0.179999953198 — —

0.5 0.268396  0.192416  0.180166  0.179987  0.179999931670 — —

1 0.508711  0.283110  0.196857  0.180385  0.179978056747  0.179999857727 —
2 1.004230  0.515988  0.286552  0.197832  0.180445566326  0.179976022194  0.179999838380

3.3 Stability design in context of “inverse-reliability”

After verifying the computational accuracy and efficiency of the IFORM, we now apply such a tool to
addressing the issue on the stability design for this typical example formulated as Eq. (7) in context of the
“inverse-reliability”. As analyzed earlier, the final acceptable thickness ¢ value of the design variable is
connected with the pre-defined target reliability index f. Also, it is notable that the maximum allowable stress
omax, viewed as a limiting value in Eq. (7) has a significant influence on the identification of the desirable 7 value.
Hence the process of stability design involves evaluating the design variable ¢ for varying omax to achieve the
prescribed level of fi. By doing so, the calculations are accomplished in sequence at the pre-set level of S, viz.,
the target reliability index is varied from 1.2 to 6.0: = 1,2, 2.0, 2.8, 3.6, 4.4, 5.2 and 6.0. The obtained results
are then translated into a design chart, where the vertical ¢ is plotted against the horizontal omax, as illustrated
diagrammatically in Figure 1.

0.36 -+ 1 1 I L 1 1 1 1 it 1 1

0.33 1

Bt: Target reliability index

Desirable thickness t of slab-strip (m)

T T T T T T T T T T T T T
10 15 20 25 30 35 40 45 50 55 60 65 70

Maximum allowable stress @ max (MPa)

Figure 1. Stability design chart for # in reference to omax with varying S

Typical features observed in this figure are as follows:

(1) For a single curve with any prescribed f, it is clear that the desirable ¢ increases gradually with
increasing the limiting value of omax. The reason is that at a certain reliability level of S, a large omax means a
more demanding performance requirement than a small one in evaluating the tunnel stability. This suggests the
improvement in the performance requirement in response to the spalling behavior of this tunnel example. For
this purpose, the desirable thickness 7 of a single slab-strip corresponding to, for instance, a required length of the
rockbolts or cables involved in reinforcement has to be increased.

(2) If the limiting value of omax touches the same value for any reliability level of f:, then the desirable 7 is
on the increase once f gets larger. This is because the increase of pre-defined £ will make the reliability level
required for the tunnel stability has a tendency to increase. In this case, it is necessary to make an improvement
in the safety requirement of this tunnel example. Therefore, when the limiting value of omax is invariable, the
desirable # becomes definitely larger to avoid failure resulting from the spalling behavior.

(3) If the desirable 7 reaches a certain given value at all reliability level of /5, then the limiting value of omax
appearing in this figure tends to increase with the decrease of fi. This result is ascribed to the fact that a
diminishing f indicates the degraded performance requirement in the tunnel stability. Correspondingly, it is
understood that when the desirable ¢ remains unchanged, om.x showing increasing trend will undoubtedly
accelerate the formation and propagation of the spalling behavior until the failure occurs for this tunnel example.
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4 Conclusions

To cope with the stability design for the spalling behavior characterized in deep hard rock tunnel under
uncertainty, a practical [IFORM in the context of the “inverse-reliability” was developed to fulfill this task.
Distinguished from the previous work done with the traditional “forward-reliability”, the present study
conducted with the “inverse-reliability” aims to solve the problem of acquiring, in a direct and transparent
fashion, the unknown design variable in the case where the pre-designated reliability is achieved.

As an initial step to propose the IFORM in deep underground excavations, its calculated results in accuracy
and efficiency are both validated by virtue of a representative example of the deep hard rock tunnel. On this basis,
the current IFORM’s application within a framework of the “inverse-reliability” to the deep tunnel stability
design involving the spalling behavior in the hard rock is further demonstrated with the aid of the obtained
design chart. Such a type of this chart is considered helpful in the sense that it enables the designer to make
informed decisions in the face of uncertainty concerning what the design variable could be at the target reliability
index.

Acknowledgments

The research on which this paper is based is supported in part by the National Natural Science Foundation of China under
Grants No. 51874354 and 52074350. The support is gratefully acknowledged.

References

Babu, G., and Basha, B.M. (2008). Optimum design of cantilever sheet pile walls in sandy soils using inverse reliability
approach. Computers and Geotechnics, 35(2), 134-143.

Balu, A.S., and Rao, B.N. (2012). Inverse structural reliability analysis under mixed uncertainties using high dimensional
model representation and fast Fourier transform. Engineering Structures, 37(4), 224-234.

Birger, I.LA. (1970). Probability of Failure, Safety Factors and Diagnostics Problems of Mechanics of Solid Bodies.
Sudostroenve Publishers, Leningrad.

Cai, M. (2008). Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight
from numerical modeling. International Journal of Rock Mechanics and Mining Sciences, 45(5), 763-772.

Der Kiureghian, A., Zhang, Y., and Li, C. (1994). Inverse reliability problem. Journal of Engineering Mechanics, 120(5),
1154-1159.

Fairhurst, C., and Cook, N.G.W. (1966). The phenomenon of rock splitting parallel to the direction of maximum compression
in the neighborhood of a surface. Proc., The 1st Congress of The International Society of Rock Mechanics, Lisbon, 687-
692.

Fontaine, E., Orsero, P., Ledoux, A., et al. (2013). Reliability analysis and response based design of a moored FPSO in west
Africa. Structural Safety, 41, 82-96.

He, M.C., Miao, J.L., and Feng, J.L. (2010). Rock burst process of limestone and its acoustic emission characteristics under
true-triaxial unloading conditions. International Journal of Rock Mechanics and Mining Sciences, 47(2), 286-
298 Martin, C.D., Kaiser, P.K., and Christiansson, R. (2003). Stress instability and the design of underground
excavations. International Journal of Rock Mechanics and Mining Sciences, 40(7-8), 1027-1047.

Hoek, E., and Brown, E.T. (2019). The Hoek—Brown failure criterion and GSI - 2018 edition. Journal of Rock Mechanics
and Geotechnical Engineering, 11(3), 445-463.

Hoek, E, Kaiser, P.K., and Bawden, W.F. (1995). Support of Underground Excavations in Hard Rock. Balkema, Rotterdam.

Hou, Z.S., Gong, Q.M., Jiao, W.G., et al. (2013). Demonstration of concave deformation of arc-shaped rock slabs in deep
circular tunnels. Chinese Journal of Geotechnical Engineering, 35(3), 551-558.

Ji, J., Zhang, C., Gao, Y., et al. (2019). Reliability-based design for geotechnical engineering: An inverse FORM approach
for practice. Computers and Geotechnics, 111, 22-29.

Ji, J., Zhang, Z., Wu, Z., et al. (2021). An efficient probabilistic design approach for tunnel face stability by inverse reliability
analysis. Geoscience Frontiers, 12(5), 374-383.Jiang, Q., Feng, X.T., Fan, Y.L., et al. (2017). In situ experimental
investigation of basalt spalling in a large underground powerhouse cavern. Tunmnelling and Underground Space
Technology, 68, 82-94.

Li, H., and Foschi, R.O. (1998). An inverse reliability method and its application. Structural Safety, 20(3), 300-303.

Li, X., and Li, X.B. (2016). Reliability-based design for rock tunnel stability using inverse-reliability approach. Proc.,
International Geotechnics Symposium cum International Meeting of CSRME 14" Biennial National Congress,
HongKong, Abstract Page, 74.

Martin, C.D., and Christiansson, R. (2009). Estimating the potential for spalling around a deep nuclear waste repository in
crystalline rock. International Journal of Rock Mechanics and Mining Sciences,46(2), 219-228.

Read, R. (2004). 20 years of excavation response studies at AECL’s Underground Research Laboratory. International
Journal of Rock Mechanics and Mining Sciences, 41(8), 1251-1275.

Sun, G.Z., and Huang, Y.F. (1988). An example of slab-rending in the surrounding rock of underground excavation with high
walls and its mechanical analysis. Chinese Journal of Rock Mechanics and Engineering, 7(1), 15-24.

Sun, G.Z., and Zhang,W.B. (1985). A commonly-sighted rock mass structure—slab-rent structure and its mechanical model.
Scientia Geologica Sinica, (3), 275-282.

Wu, W.X., Gong, F.Q., and Yang, W.M. (2020). Experimental simulation study of spalling in deep rectangular tunnel with
plastic fine grain marble. Tunnelling and Underground Space Technology, 98,103319.



