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Abstract: Quantifying the uncertainty of stratigraphic condition is an essential task in geotechnical projects. However,
delineating and simulating heterogeneous stratigraphic profiles (non-stationary field), such as tectonically distorted or
irregularly deposited strata from limited borehole information is still an open question and challenging task in engineering
geology. In this study, a novel approach that applies the image warping technique to non-stationary field and combines it
with an advanced stratigraphic stochastic simulation model is proposed to address this challenge. The image warping
technique is effective to transform non-stationary field into stationary field based on the thin plate splines warping algorithm.
Subsequently, an in-house developed stratigraphic stochastic simulation model can be applied to the transferred stationary
field. The developed stratigraphic simulation approach integrates the Markov random field (MRF) model and the
discriminant adaptive nearest neighbor-based k-harmonic mean distance (DANN-KHMD) classifier into a Bayesian
framework to efficiently estimate the stratigraphic uncertainty given sparse site exploration results. To demonstrate the
effectiveness of the developed approach, a synthetic case is studied using the developed approach. We envision this approach
can be further promoted in industry practices for an improved risk control in geotechnical engineering.

Keywords: Non-stationary field; image warping technique; Markov random field; discriminant adaptive nearest neighbor-
based k-harmonic mean distance; stratigraphic uncertainty; Bayesian machine learning.

1 Introduction

Obtaining accurate site-specific stratigraphic interpretation with quantified uncertainty is a crucial and essential
step for planning and designing geotechnical systems. However, the subsurface soil layer configuration at a
specific project site can be difficult to infer due to the limited site-specific data, let it alone to quantify the
associated uncertainty (Wang et al., 2016), especially for sites with extremely complex strata such as tectonically
distorted or irregularly deposited strata.

Substantial works (Fenton, 1999; Miranda et al., 2009) have been conducted to delineate deterministic soil
stratification for geotechnical design. Some stochastic modeling frameworks, such as Markov chain model (Qi et
al., 2016), multiple-point geostatistics (Fadlelmula et al., 2014) and iterative convolutional XGBoost (Shi and
Wang 2021), have been developed in recent years. These models are able to generate stratigraphic realizations
with quantified uncertainty, however, they have certain strong assumptions (such as stationary transition
probability matrices or predefined pattern templates) that may be violated by natural soil configurations.

Recently, Markov random field (MRF)-based stochastic simulation approaches have been applied in
engineering geology (Wang et al., 2016), due to the MRF models can provide a flexible and intuitive way to
reflect and reproduce the anisotropy and heterogeneity of subsurface geological structures. While the existing
MRF models (Wang et al., 2016; Wang et al., 2017; Wang et al., 2019) have a certain drawback: (1) the model
parameters are subjectively defined in priori, besides they are fixed during the entire inferential process without
consideration of model bias/uncertainty; (2) the current approaches may generate unrealistic soil profiles if there
is no proper regularization (which is non-trivial) on model parameters; (3) the current models are unable to cope
with non-stationary field such as tectonically distorted or irregularly deposited strata.

In this study, a novel approach that applies the image warping technique to non-stationary field and
combines it with an advanced stratigraphic stochastic simulation model is proposed. The image warping
technique is effective to transform the complex and intractable non-stationary field into a much simpler and
tractable stationary field based on the thin plate splines warping algorithm (Bookstein, 1989). Subsequently, an
in-house developed stratigraphic stochastic simulation model, that integrates the Markov random field (MRF)
model and the discriminant adaptive nearest neighbor-based k-harmonic mean distance (DANN-KHMD)
classifier into a Bayesian framework, can be applied to the transferred stationary field to efficiently estimate the
stratigraphic uncertainty given sparse site exploration results.
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2 Method

The flowchart of the developed approach is shown in Figure 1. Detailed explanations regarding each component
are provided blow.
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Figure 1. The flowchart of the developed approach.

2.1 Markov random field
An MRF model is a probabilistic graphical description of a spatial pattern defined on a pixel array. Pixels having
the same label belong to the same soil type. Formally, the label field can be represented as a label configuration
of all pixels x = {xi;, i€S, xi€L}, where S= {1, 2, 3, ..., s} indicates all pixels and L = {1, 2, 3, ..., [} is a set of
all possible labels indicating different soil types.

A typical example of a graph model describing the spatial correlation of an MRF is the two-dimensional
lattice with a second-order neighborhood system (Besag, 1986). The local neighborhood system ¢; of pixel i
consists of the nearest eight pixels around it. The local conditional probability P(x, |x;) of a specific label

given the labels of all neighbors can be calculated in the following form (Besag, 1986):

P(x,,x,) exp[-U(x,,x, )]
x )= L/ LA ) (1)
Pl 1 x,) z P(x;,x;,) Z exp[-U(x;, x; )]

To compute the local energy U(x,,x, ), we adopt the widely used Potts model (Koller and Friedman,
2009) to characterize the local contextual interaction. Potts model has the following form:
U(x,x,) =V,06)+ DV, (6,x,) 2
Jeo;
where p(x)is the potential function defined solely on pixel i indicating the preference of choosing different
labels at pixel i and V,, (%) is the potential function reflecting the local contextual interaction between

neighboring pixels and defined as:

0 if x, =x,
I/i,_/'(xﬂx_/'):{ ! (3)

B, if x, #x,

where g cp=1{p,p,4,.p,) indicates the contextual constraint, corresponding to one of the four independent

directions (i.e., 0, m/2, n/4, 3n/4), within a two-dimensional lattice grid, and is referred to as a granularity
coefficient. The behavior of an MRF model is intimately related to the granularity coefficients f. More detailed
information for expounding Vij(xi,x;) and Vi(x:) can be found in the authors’ previous work (Wei and Wang,
2022; Wang and Wei, 2022). For ¥(x,), we adopt the non-homogeneous version that depends on the pixel

location, and characterize ¥ (x,) via the DANN-KHMD classifier following Wei and Wang (2022).



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

2.2 Bayesian machine learning
All pixels in a two-dimensional array can be divided into two groups: a) pixels with known labels indicating
sparse borehole information xsx, and b) pixels with unknown labels Xuuknown elsewhere. Both Xunknown and the
granularity coefficients # need to be inferred from xzz. A Markov chain Monte Carlo (MCMC) method is
employed to sample (Xunknown, ) using two conditional a posteriori distributions P(x,,  |x,,,f) and
P(B|X,0ms Xy ) 1teTAtIVELY.

Given xpy and f, P(x,00 | X2 B) is a Gibbs distribution with fixed soil labels only at the borehole

locations. The local energy at unknown pixels can be calculated using Eq. (2) and the corresponding conditional
probability of choosing each label given the neighbors can be evaluated via Eq. (1). Then, given an initial filed
sampled using the DANN-KHMD classifier, a realization of the conditional random field p(x ) can

unknown | xBH > ﬁ
be simulated via a parallel strategy named chromatic sampler (Wang et al., 2017).

During the iterative process, every time after a realization of Xunknown is simulated, f is sampled following
the conditional posterior distribution:

POSt(ﬁ) o« Prior(ﬂ)L(xBH | ﬂ’ xunknown) (4)
where Post(f) and prior(g) are the posterior distribution and prior distribution of g, respectively;
L(Xg, | B2 X i) is the likelihood function indicating the possibility of having the observed soil configuration
given the simulated borehole information and f. It can be evaluated via the following equation.

L(xunlcrmwn’xBH | ﬂ) = H P(xi | xa’ 7ﬂ) (5)

X € Xunkionn »Xprr }

In this work, Prior(f) is predefined by a multivariate Gaussian distribution with a mean vector u indicating
the rough estimates of the granularity coefficients, and a diagonal covariate matrix ¢°I4, where ¢ is a predefined
standard deviation of granularity coefficients and L4 is the identity matrix. u and ¢°ls.can be simply left as default
or estimated roughly (less-informative prior) or customized if site-specific knowledge is available as Prior(f) is
not sensitive to the final estimation results (Wei and Wang, 2022).

The Metropolis-Hasting algorithm is employed to update f, and the log(target) function is expressed as

log(target) = log(Prior($)) +log(L(x; | B, X)) (0)

The higher the log(target) is, the higher possibility that the boring logs can be observed and the
corresponding granularity coefficients are compatible with the simulated field. In other words, Eq. (6) is being
optimized during the Bayesian machine learning process via MCMC.

2.3 Discriminant adaptive nearest neighbor-based k-harmonic mean distance (DANN-KHMD) classifier
The DANN-KHMD classifier is essentially an approach to roughly “guess” possible labels of Xunknown given xsu
in a probabilistic manner. The local metric W, at unknown pixel 7 is evaluated over a rectangular learning

domain ¥, which is centered at i and includes all pixels in the rectangular region.

The DANN distance D(j, i) between pixels j and the center unknown pixel 7 can be calculated using the
local metric ¥, (Hastie and Tibshirani 1996):

D(iy=(v,—v)"¥, (v, ~v,) @

in which v, =[c¢,, ri]T are the coordinates of pixel i, where ¢ and r are the column and row indices, respectively.
The metric ' is defined as follow (Hastie and Tibshirani 1996):

W, =W WBW Y el [W (®)

where £ is a tuning parameter. W and B are the within-label covariance matrix and the between-label
covariance matrix, respectively. They are calculated using known pixels j in N.. Detailed information for
demonstrating the DANN distance can be found in the authors’ previous work (Wei and Wang, 2022).

Then, the harmonic mean distance (HMD) is introduced to measure the mean distance between a subset of
xsu having a certain label in terms of D(j, i) with the formulation below (Pan et al., 2017):

HMDI.('”) :L,x. =m ©

k 1 J

j=1 D(]al)
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where HMD!™ is the HMD of the k nearest known pixels having label m to the unknown pixel i. HMD'"™
indicates the local preference of label m. In Eq. (2), V,(x,)is the potential function defined solely on pixel i and
indicates the preference of choosing different labels at pixel i, it is reasonable to set V,(m)=HMD™ .

Accordingly, the local probabilities pro™ of choosing label m for pixel i can be calculated with the form below
following Besag (1986) and Geman and Geman (1984):

Pro™ = exp(-HMD™)
") exp(-HMD™)

m'elL

(10)

The initial stratigraphic configuration can be sampled directly and independently via Eq. (10) at each
unknown pixel. In order to hold the local label preference characterized by mapp™ throughout the stochastic

simulation, the HMD is integrated into the local energy and the conditional probability Eq. (1) for a local
neighborhood system is updated as:

exp[-(HMD™ + "V, (x,.x,))]

P(x, | x,) = = (11
N exp[~(HMD™ + >V, (x,,x,))]
x;'eL je€o;

Accordingly, the likelihood function (i.e., Eq. (5)) is updated as:

exp[—(HMDf"") + z V., (x,,x))]

L(xun nown > X ‘ ﬂ) = ‘ Jjeo; (12)
k : X'E{x’;”l];’x”“} z eXp[f(HMDi("' ) + z Vi./‘(x, '7 x/))]

x,'eL jeo,

The sensitivity of a few parameters including k and the parameters for learning domain X, have been

analyzed in the authors’ previous work (Wei and Wang, 2022). The setting of these parameters follows Wei and
Wang, 2022.

2.4 Image warping technique
Given an image with a sparse set of control points v, =[c,,7]" with corresponding displacements d, =[Ac,,Ar;]",
we can find a mapping f:v, — v, from pixels in the input image to pixels in the warped/deformed image so that

the corresponding warped target points v =[¢,,7']" closely match its expected targets [c, + Ac,,r, + Ar]", and the

surrounding pixels are deformed as smoothly as possible. Accordingly, the thin plate spline (TPS) warping
algorithm is employed for image warping problem due to it can provide a smooth interpolation in both column
and row directions using the following smooth function (Bookstein, 1989):

f(cl.',rl.') =a,+ac+ayr+ ia)iG("(ci,ri ) —(c,r)”) (13)

where G(e)=e¢’log(e). Besides, additional constraints are needed for the system following Donato and Belongie
(2003):

N N N
Za)i :Za)ici :Za)ir;' =0 (14)

i=1 i=1 i=1

Having Eq. (13) and (14), a linear system can be yielded for the TPS coefficients (Donato and Belongie,
2003):

{ ' }{ }:[V} (2
P° O a 0
(Civ’?)_(cj’r.f)

vector of zeros, @ and v are column vectors formed from @, and v,, respectively, and a is the column vector

where k- G(‘

), the ith row of P is (l,ci,rl.), O is a 3x3 matrix of zeros, o is a 3x1 column

with elements (a,,a,,a, ).
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Given a few control points (v, and v, are known) and the corresponding warped control points (i.e., target

points, v' is known), the matrices ¥ and P can be calculated directly. Therefore, the vector [a) a]T
containing the weight @, for each control point i and coefficients (ao,al,az) can be solved according to Eq. (15)
. Subsequently, the warped point ' =(c’,7") of any point v =(c,r) in the input image can be computed via the
smooth equation Eq. (13) given a few control points v, = (Cn’”i ) The procedure is called forward warp. While

there are some gaps during forward warp such as many integer pixels are not assigned labels due to the warped
positions of these pixels computed via the smooth equation are often non-integer. Accordingly, the inverse warp
method is employed in the warping of stratigraphic profile.

Unlike the forward warp, the matrices K and P are computed with the target points and the vector v o]

is a vector with respect to the control points. Therefore, the vector [@ a]T is for the transformation of warped

control points to control points. Accordingly, for each pixel in the profile to be obtained, its corresponding
position in the original profile can be found using the inverse warp ideology. Hence, there is no gap in the
warped profile as each pixel is labeled.

2.5 Uncertainty quantification
The maximum a posteriori (MAP) of soil profile can be determined using the following majority vote principle:

MAP(i) =argmax,, (P";meL) (16)

in which Pi('")is the marginal probability of soil label m at pixel i. In order to quantify the uncertainty of the

estimated soil labels at each pixel, the information entropy (IE) quantifying the uncertainty at a given pixel 7 is
adopted and expressed as the formulation below (Li et al. 2016):

IE, ==y [ P™ log P™ | 17

mel

The higher /E; is, the higher uncertainty level it is at the given pixel i, and hence it will be more difficult to
infer the actual soil label.

3 Case Study

The synthetic case is derived from an automatically generated “soil profile” that has size 100x100 pixels, using
a Gibbs sampler with the granularity coefficients g =[4.50, 0.15, 0.15, 0.15]. First, put the generated soil profile
in a larger space (see Figure 2a) so as to provide space for its deformation. Five series of control points (see red
points in Figure 2a) are set on the profile and the corresponding target points lie on five sinusoids (see Figure
2b). Then the warped soil profile (see Figure 2¢) can be acquired via image warping technique. The part (see
Figure 2d) extracted from the white dotted box (see Figure 2¢) is considered as the “ground truth” (original
profile) throughout the sinusoidal case. Four evenly distributed virtual boreholes annotated by the dashed lines
are extracted as shown in Figure 2d. Note that the soil profile deformation process can be used as prior
information that combines with four extracted boreholes are the information used to infer the “unknown” pixels.
In real practice project, the prior information of stratigraphic deformation can be caught according to the
geological knowledge acquired by such as geological survey programs, experienced geologist, recorded

geological data.
S | w Label C
| ( e / s . ! . ‘ Label B

Label C

SN
(a) Soil profile generated ' (b) Five sinusoids (c) Warped soil profile (d) Original profile
using Gibbs sampler

Label A

Figure 2. The deformation process of soil profile.

3.1 Warping of borehole information
According to the prior information, the stratigraphic pattern in the area of modeling domain deforms into
approximately sinusoidal in depositional history.
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(a) Boreholes in physical space (b) Warped boreholes in standard space

Figure 3. Boreholes and warped boreholes.

Then three series of control points are setup on borehole pixels and each series of control points is on the
same sinusoidal, which can be seen in Figure 3a (red dots on boreholes). Moreover, a few additional control
points (see the red dots not on boreholes in Figure 3a) used to adjust sinusoidal tangents at both sides of the
modeling domain are set to be horizontal with and adjacent to the boundary control points as the sinusoidal
tangents are horizontal on two boundaries that known from the prior information. Figure 3b shows the target
points in standard space. The borehole information, in standard space, warped using the locations of control
points and target points via image warping technique is also shown in Figure 3b.

3.2 Simulations results

Subsequently, the stochastic simulation is implemented using the warped boreholes in standard space (see Figure
3b). Two thousand MCMC iterations are performed. The simulated trace of § and total energy of each realization
are shown in Figure 4a. As we can see, for this specific simulation, the chains of f1, 52, B3, f+ and total energy
are convergent after 1200 iterations. The trace indicates that the convergence can be reached even with sparse
boreholes and little or no prior information of £.

The MAP estimation of the simulated soil profile is shown in Figure 4b, which is warped using image
warping technique from the soil profile inferred via the warped borehole information (see Figure 3b). The
accuracy of MAP estimation is 89.76%. The corresponding IE map in Figure 4b reflects the uncertainty level at a
per-pixel basis. Generally speaking, higher information entropy can be found around the boundary of
neighboring layers, while low information entropy exists inside different simulated layers. This result agrees
with our intuitions. It shows that the proposed approach can well infer the soil profile and quantify the
stratigraphic uncertainty in non-stationary field only use sparse boreholes (say, only 4% known pixels in this
case).

i u I Label C

AEcw89.76%

-2
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Iterations (b) MAP estimation

20000

15000

Total energy

10000

5000

o 250 500 750 1000 1250 1500 1750 2000
Iterations

(a) Simulated granularity coefficients and total energy
Figure 4. Simulation results.

0o

(¢) Information entropy map

4 Conclusion

In this study, a novel approach that implements the image warping technique to generate non-stationary field and
combine it with an advanced stratigraphic stochastic simulation model is proposed. The proposed method aims at
improving the performance of the developed MRF model for stratigraphic interpretation and uncertainty
quantification, in non-stationary field such as tectonically distorted or irregularly deposited strata from, in the
situation that only sparse boreholes are available. A synthetic example has been used to demonstrate the
effectiveness and to validate the proposed method. It has been shown that the proposed approach can well
interpret the soil profile and quantify the associated uncertainty with sparse borehole information in non-
stationary field.
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