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Abstract: The influence of spatial variability of soil on geotechnical engineering such as the ultimate bearing capacity of
shallow foundation can be considered by reliability analysis based on random field theory. However, reliability analysis can
only estimate the reliability index or failure probability of geo-structures, which cannot identify the important regions of random
fields. Hence, a reliability sensitivity analysis method considering spatial variability of soil (called RSA-KL-FORM—x) is
proposed in this study, which employs the Karhunen—Loéve (KL) expansion method and the first—order reliability method
(FORM) as the method of realizing random field and reliability analysis method, respectively. In the proposed RSA-KL—
FORM-x, mean reliability sensitivity index (MRSI) and standard deviation reliability sensitivity index (SDRSI) are defined as
functions of coordinates in random field domain, which means that the MRSI (or the SDRSI) with larger absolute values can
be regarded as important regions. A shallow foundation with spatially various cohesion of soil is adopted to illustrate the process
of the RSA—KL-FORM-x. The results show that the top part of the soil in contact with the shallow foundation is an important
region to improve the reliability of the shallow foundation.
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1 Introduction

During the last several decades, effects of random uncertainties on geotechnical engineering have been investigated.
Therein, reliability analysis aims at assessing the performance of a geo-structure model by calculating its reliability
index S, while reliability sensitivity analysis aims at investigating the effects of random variables on the reliability
index S of a geo-structure model (Li et al., 2009). Generally, reliability sensitivity analysis is mostly based on
corresponding reliability analysis, which can be divided into simulation—based methods and approximately
analytical methods (Huang and Zhang, 2013). Among many methods, the analytical solution of reliability
sensitivity analysis based on the first-order reliability method (FORM) is often employed due to satisfactory
computational efficiency and reasonable computational accuracy (Ditlevsen and Madsen, 1996). Because a
random field is composed of infinite correlated random variables, these methods adapted in random variable model
had hardly been extended to random field model that is of interest to researchers and engineers.

To overcome this difficulty, a reliability sensitivity analysis method considering spatial variability of soil
(called RSA-KL-FORM-—x) is proposed to identify the important regions of random field, where the Karhunen—
Loéve (KL) expansion method is employed as a method of realizing random field and the FORM is employed as
areliability analysis method. After the theory of reliability analysis and reliability sensitivity analysis are explained,
an example of shallow foundation is employed to illustrate the process and the merits of the RSA-KL-FORM-x.

2 Reliability analysis based on the KL expansion method

A random field is composed of infinite correlated random variables, where the value of a variable at one point is
correlated to the values at nearby points. To carry out reliability analysis considering random field, a random field
must be represented by a finite number of random variables, which is call random field discretization. The KL
expansion method one of series expansion methods can realize random fields with fewer random variables than
point discretization methods and average discretization methods (Sudret and Der Kiureghian, 2000). Meanwhile,
to reduce the number of calculations of limit state function, the FORM is a better choice than the theoretically
more accurate Monte Carlo simulation (Wang, 2011). Hence, combination of the KL expansion method and the
FORM (i.e., the KL-FORM) is proposed in Fei et al. (2021). Note that the standard normal random variable vector
¢ in the KL expansion method is considered as the random variable vector for reliability analysis. However, the
convergence of the FORM has long plagued designers and engineers. For guaranteeing excellent numerical
stability of the FORM, the improved Hasofer—Lind—Rackwitz—Fiessler—x (iHLRF—x) (Ji et al., 2018) is introduced
into the iterative process of the FORM (called KL-FORM-x).
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2.1 KL expansion method

In geotechnical engineering, spatial variability of soil can be described by various types of auto-correlation
functions (ACFs). In this study, a one-dimensional single exponential (SNX) ACF along the vertical direction is
used to express the auto-correlation between any two locations in a random field domain Q:

Py, Y =exp(=(y-y")/0) )]

where 6 is auto-correlation distance (ACD). After the ACF has been determined, the KL expansion method realizes
the random field by the spectral decomposition of the ACF, whose procedures for a one-dimensional random field
are summarized as follows.

1) Calculate the eigenvalues A; and eigenfunctions ¢:y) (i=1, 2, ..., M; and M is the number of KL expansion
terms) of the random field by solving the homogeneous Fredholm integral equation according to the ACF. However,
Ai and ¢(y) cannot be calculated analytically in most cases, so the Jacobi—Lagrange—Galerkin (JLG) method, which
is a numerical approximation method for the KL expansion method (Lin et al., 2022), is employed in this study.

2) Express the stationary standard normal random field H”(y) using Eq. (2):

H°(y)=R"A"7¢ 2)

where ¢is a M x 1 vector whose elements are independent standard normal random variable &; A" is a M x M
diagonal matrix whose diagonal elements are 4;', and ; are arranged in a descending order; R is a M x 1 vector
whose elements are @i(y) corresponding to 4;; and the superscript ‘T’ represents the transpose of a matrix.

3) Calculate the non-normal and non-stationary random field random field H(y) based on H"(y) using Eq. (3):

H(y)=F[®H" ()] 3)

where F*!(+) is the inverse cumulative distribution function; and &(-) is the cumulative standard normal distribution
function. Obviously, a random field that obeys any probability distribution can be realized by the above process.
Among them, the normal random field is most widely used in geotechnical engineering, i.e., H(y) = uun(y) +
or(y)HP(y), where un(y) and ou(y) are the mean and standard deviation of H(y), respectively. Note that if a random
field has a constant mean and standard deviation, this random field is a stationary random field.

2.2 FORM based on the iHLRF—x
For a limit state function (LSF) G(X), calculation of the reliability index f in the original space (X—space) can be
expressed as follows (Low and Tang, 2004):

p=min(y(x- ) (") p(6") (- ")) =& - ) (") p () (x - ") subject to G(X) =0 (4)

where x s a realization of random variable vector X; #™ and 6™ are the equivalent normal mean vector and standard
deviation diagonal matrix at x, respectively, which can be calculated by the Rackwitz—Fiessler transformation
(Rackwitz and Flessler, 1978); p is the correlation matrix of random variables; and x" is the design point located
on the LSF G(X). It is difficult to solve for the reliability index f according to the optimization problem shown in
Eq. (4) because the LSF G(X) in the X—space is often a nonlinear implicit function. Therefore, the iHLRF—x is
employed to calculate 3, where the design point x” can be recursively computed using Egs. (5)—(6):

X, =x,+0d, (5
o~ [VG(x, ) (x, _.”/F) - G(xk)]O'EPO'ITjVG(xk)
d =u + S -x, 6)
VG(x,) o, po, VG(x,)

where x; and xx+1 are the kth and (k+1)th iteration point in the X—space, respectively; G(xx) and VG(xxk) are the
values of the LSF G(X) and its gradient vector evaluated at xx, respectively; dx is the search direction at xi; and G
is the step size (0 < 6x< 1), which can be determined by the Armijo rule:

0, =max(b* [m(x, +b'd,)—m(x,) < ab’ <Vm(xk), d, >) (7

where a € (0, 1/2) and b € (0, 1) are prescribed parameters (@ = 0.2 and b = 0.5 is usually applied to the recursive
computation); s is an integer for optimal solution, which is set to cycle from 0 to Smax, and smax is equal to 3—5 in
practice; and m(x) and Vm(x) are the merit function and its gradient vector in the X—space, respectively:

m(x)=(c— ™) (@) p (6Y) - M) 24 dG () Vm(x) = (™) p (0)  (x - ™) +esgn(G)VG(x) (8)

where ¢ > 100 suffices for most engineering problems; and sgn(+) is the sign function. The Armijo rule is equivalent
to applying a shrinkage factor 6k on the search direction di until the merit function is sufficiently reduced.
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For an implicit LSF whose value is calculated by numerical simulation, the gradient vector VG(x) of the LSF
is usually estimated by finite difference method (FDM), where the difference step size has an important effect on
the gradient vector. For random variable vector X with a specific meaning, the difference step size is easier to
choose in the X—space than in the standard normal space (U-space).

2.3 KL-FORM-x

By defining &' = A'2¢, the FORM based on the KL expansion method can be performed to the X-space (called
KL-FORM-x). In the KL-FORM-x, the basic variable vector &'is a M x 1 random variable vector whose elements
&' are independent normal random variables with zero mean and ;" standard deviation. From the principle of the
KL expansion method, the eigenfunctions ¢i(y) are of the same order of magnitude and &' = /2% are considered
as the weight of the eigenfunctions ¢i(y). This means that &' have greater numerical stability as random variables
than & because difference step sizes are not scaled up or down by 4;"2. Hence, the proposed KL-FORM-x provides
greater numerical stability for the calculation of the reliability index S by considering &' as random variables.
Specifically, the iterative convergence criteria (ICCs) of the KL-FORM-—x are expressed as follows:

ICC1: |B.,—B|<e, 1CC2: max(|&),, —&l) <e,; ICC3: [G(x,,,) <&, )

where &g, €4, and &, are the convergence criteria for the reliability index f, the design point &”, and the value of the
LSF, respectively. When all the ICCs are satisfied, the accuracy of reliability analysis is guaranteed. The reliability
index of geo-structure model f is equal to Si+1 and the design point &” is equal to &1

Furthermore, the number of random variables for a random field equals to the number of KL expansion terms
M. This means that the accuracy of random field discretization increases with M, but simultaneously the
computational cost of the FORM also increases with M because the number of calculations of LSF is proportional
to the number of random variables. Hence, the normalized global auto-covariance function error ey is used to
balance the accuracy of random field discretization and the computational cost (Lin et al., 2022):

1 1
SMZWLJJ‘Q dydy ~|Q| ZZ

Jj=li'=
where [Q| is the area of random field domain for geo-structure model; y¢; and y.; are the coordinates of jth grid
centroid for the geo-structure model; and Z; is the length of the jth grid (j = 1, 2, ..., Ne; and Ne is the number of
grids of geo-structure model). The suitable number of KL expansion terms M can be selected by comparing e
with a predefined allowable discretization error €., where ea ensures the accuracy of random field discretization.
Generally, €a of 5% is suitable for most engineering problems.

PO, Y- Z%@(y)cﬁ,- ()

Py V) — Zi¢(yq)¢ (g )}L, ;. (10)

3 Reliability sensitivity analysis based on the KL-FORM-x

3.1 Definition of the reliability sensitivity index

The results of reliability sensitivity analysis can be expressed using the dimensionless partial derivative of the
reliability index £ with respect to the statistical parameters g and ¢ of random variables, i.c., the mean reliability
sensitivity index (MRSI) w, = diag(e)(6f/0u) and the standard deviation reliability sensitivity index (SDRSI) w.
= diag(o)(0p/0v), where y, and y, are n x 1 column vectors (7 is the number of random variables), whose elements
are the MRSI y,; and the SDRSI v of the ith random variable, respectively, and diag(-) represents that the elements
of a vector are applied to form a diagonal matrix. The MRSI w, and the SDRSI , are quantitative indexes and are
beneficial to engineers to understand how, and to what extent, the reliability index of geo-structures changes with
perturbations of random variables, and to know how changes in the material properties influence the reliability of
geo-structure model under design.

Obviously, the MRSI y,, and the SDRSI w. for random variable vector " have no physical meaning because
&'is only a virtual random variable vector for the discretization of a random field in the KL expansion method and
it is not a material parameter. Hence, by replacing the statistical parameters g and ¢ of random variable vector &’
with the statistical parameters ys(y) and ou(y), where un(y) and ou(y) represent the mean and the standard deviation
of a random field, respectively, the MRSI and the SDRSI can be redefined using Eq. (11):

w, () =0,(WI0B/0u, (V] vw,(»)=0,(MB/da,(y)] (11)

Because the calculation of reliability sensitivity index is based on the KL-FORM-x, the proposed reliability
sensitivity analysis method is called RSA-KL-FORM-x. yu(y) and w,(y) are functions of the coordinates y in a
random field domain, so the RSA—KL-FORM-x is also called region reliability sensitivity analysis method. The
important regions can be made up of locations with larger absolute values of the MRSI w,.(y) or the SDRSI y.(y),
which is helpful for risk recognition and management in engineering practice.



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

3.2 Calculation of the reliability sensitivity index
Taking the MRSI as an example, the y,(y) can be rewritten based on the chain rule as follows:

_ P _ P
v, (¥)=0,() 5,0 o, (| ( Pe

'* D * T
o¢"  OH (y)
OH"(»)" Oy (»)
where HP(y)" is the realization of the stationary standard normal random field for the design point &"; and 0f / 6&",

o0& | 6HP(y)", and 0HP(y)" / Gun(y) are calculated as follows.
1) 0B/ 6&™: The partial derivative of the reliability index S with respect to the design point & is expressed as:

) (12)

8" aA”E ) & B B

where 0B / 0&" is a M x 1 vector, whose elements A;7'&" / f represents the effect of a small change at the design
point &' on the reliability index S, and & is the design point in the U-space.

2) 0¢" / OHP(y)": Based on Eq. (2) and the Moore—Penrose inverse, the partial derivative of the design point
&" with respect to the stationary standard normal random field HP(y) is expressed as:

0" _ AR H"(y)] _ ARH"(y)']
oH" (y)’ OH" (y)’ oH" (y)’

BB nETE A A "

=R (14)

where the superscript ‘1’ represents the Moore—Penrose inverse of a matrix which is different from the inverse of
the matrix for a square matrix. The partial derivative 6" / 0HP(y)" maps the relationship between & without
physical significance and infinite number of random variables HP(y)".

3) OHP(y)" / dun(y): Based on Eq. (3) and the principle of derivative of inverse function, the partial derivative
of the HP(y) with respect to the mean of random field u#(y) is expressed as:

OH" (y)" _ 0@ [F(H(y))] _ OF(H())/duy (v) _
Oty () Oty () P [FH)

where H(y)" is the realization of the random field for the design point &”; F(+) is the cumulative distribution
function of the non-normal and non-stationary random field H(x); @’'(-) is the inverse cumulative distribution
function of standard normal distribution; ¢(-) is the probability density function of standard normal distribution.
Obviously, the partial derivative 0HP(y)" / dun(y) adds the specific information of the random field to the reliability
sensitivity analysis. Therefore, the y.(y) can be further rewritten from Eq. (12) as:

7, (») (15)

v, =lo,(Mx, MR A'E/B (16)
Similar to the derivation of Eq. (16), the y,(y) can be expressed as:
v, (») =[o, (D, MR AEI/B (17)

where y(y) = 0H(y)" / dou(y). When a random field obeys normal distribution, y.(v) = 1 / 6u(y) and y+(y) = (H(y)"
- ua(y)) / ou(y)*. Furthermore, for a specific geo-structure model with Ne grids, the coordinate y.; can be substituted
into y.(y) and y+(y) to obtain the Ne x 1 column vectors y.(yc) and ys(yc). From the above analysis, the values of the
MRSI and the SDRSI in the proposed RSA-KL-FORM-—x rely on the values of the reliability index S, the design
point ¢, the eigenvalues i, and eigenfunctions ¢i()) obtained by the KL-FORM-x. The accuracy of the MRSI
and the SDRSI is determined by random field discretization and reliability analysis whose accuracy have been
ensured in Section 2.3. Because the JLG method is employed in this study, a larger number of orthogonal basis
function terms N is recommended, which can obtain efficiently high precision eigenvalue 1; and eigenfunctions
#i(y) and reduce M for the same . (Lin et al., 2022). Meanwhile, compared with the computational cost of the KL—
FORM-x, the RSA-—KL-FORM-x can be performed efficiently without additional time-consuming calculations
of the LSF, where dozens to hundreds of the calculations of the LSF are sufficient to complete KL-FORM-x.
Hence, the calculations of w,.(y) and w»(y) have high computational efficiency.

4  Anillustrative example of shallow foundation

4.1 Numerical model of the shallow foundation

An undrained saturated shallow foundation is modelled by the finite difference software FLAC2D. As shown in
Fig. 1(a), the width and height of the shallow foundation are 2 m and 1 m, respectively, and the width and height
of the soil model is 10 m and 6 m, respectively. The top of the shallow foundation is loaded vertically downward
with a uniform load ¢ = 600 kPa. The left and right boundaries of the soil model are fixed only in the horizontal
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direction, while the bottom boundary is fixed in both horizontal and vertical directions.

Load ¢ = 600 kPa
Pressure p / kPa
6 0 200 400 600 800 1000
00 . . : : :
5 1
g 30} 918 kPa—>
4 S :
w60 F 1
E 3 % |
~ E 90f '
2 =
] S 10t
150
0

o 1 2 3 4 5 6 7 & 9 10

x/m
Figure 1. Geometry parameters of the shallow foundation and the p—s curve when ¢ is equal to the mean of random field.

In this example, the cohesion of soil ¢sis regarded as stationary normal random field, whose mean and standard
deviation are 50 kPa and 15 kPa, respectively. The ACF of c¢sis shown in Eq. (1), where the ACD 6 of ¢sis 1 m. The
soil model is divided into 960 uniform grids, whose vertical direction is divided into 24 layers for realization of
random field (i.e., the thickness of each layer L; = 0.25 m, j = 1, 2, ..., 24). The other strength and stiffness
parameters of the soil model are constant, i.e., angle of friction ¢s= 20°, destiny ps = 1600 kg / m?, elastic modulus
Es=60 MPa, and poisson’s ratio vs = 0.3. The strength and stiffness parameters of the shallow foundation are also
constant, i.e., destiny pr = 2500 kg / m?, elastic modulus Er = 20,000 MPa, and poisson’s ratio vf = 0.2. To attach
the shallow foundation and soil model, the cohesion and angle of friction of the interface are set to half of those of
the soil model. When c¢s is equal to the mean of random field, the deformation process of soil is shown in Fig. 1(b).
The settlement s of the soil at the center of the foundation base increases with the pressure p. When p increases to
the ultimate bearing capacity pu (i.e., the inflection point in the p—s curve), the settlement s increases sharply, which
means that the soil is damaged. In this study, to avoid looking for inflection point, the bearing capacity when the
settlement of the soil reaches 150 mm is defined as the ultimate bearing capacity pu, which is almost consistent
with the bearing capacity at the inflection point. Hence, in this situation, pu is equal to 918 kPa.

4.2 Results of reliability analysis and reliability sensitivity analysis
A LSF of the shallow foundation about bearing capacity is expressed as:

Z=p,(X)-q=p, (&) —q (18)

According to the procedure of the RSA-KL-FORM—x, the KL expansion method should be firstly performed.
The number of orthogonal basis function terms N = 41 is selected in this example. The discretization error eum for
different number of KL expansion terms M is shown in Fig. 2. The discretization error em decreases with M, which
means that the accuracy of random field increases with M. The optimal value of M is 5 according to the criterion
of em < ea= 5%. In reliability analysis, s, €4, and &g are set as 0.01 for the accuracy of the reliability index and
design point in all cases. As shown in Fig. 2, the reliability index f decreases with M and stabilizes, which means
that the fluctuations of M > 5 have only a slight effect on . This phenomenon also verifies the correctness of the
random field discretization and reliability analysis. When M is equal to 5, the reliability index /S of the shallow
foundation is 1.747. Fig. 3 shows the eigenvalues 41—1s (Fig. 3(a)) and eigenfunctions ¢1(y)—¢s(y) (Fig. 3(b)), where
Ai decreases with i, while the fluctuation of @i(y) increases with i.
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Figure 2. Discretization error &), and reliability index £ for different number of KL expansion terms M.
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Figure 3. Eigenvalues and eigenfunctions for the random field of the cohesion of soil c;.

After reliability analysis is performed, the results of reliability sensitivity analysis are calculated and shown
in Fig. 4. The MRSI and the SDRSI moves from the middle to the top of the soil model with the increase of M and
tend to stabilize, which means that e = 5% satisfies the requirements of reliability sensitivity analysis. The 3—6 m
range of the soil model has a very important influence on the reliability index . Meanwhile, the location of 5 m
shows that ¢s has the greatest influence on . These phenomena are consistent with the observations of Li et al.
(2015) and Lo and Leung (2017), which verifies the validity of the proposed method. This means that if the
cohesion of soil ¢sis only regarded as a random variable, it is difficult to obtain a specific and economical solution
for engineers. Meanwhile, ignoring spatial variability of soil cannot meet the actual conditions of the engineering.
The important region can be considered as region for soil reinforcement, and the mean and standard deviation of
random field have opposite effects on 5, which means that improving the reliability of the shallow foundation can
be performed by increasing the mean or decreasing the standard deviation. Therefore, reliability sensitivity analysis
takes the treatment of geotechnical engineering from qualitative level to quantitative levels. From the perspective
of computational efficiency, M of 5 is the maximum of number of random variables in this study. However, only
57 calculations of the LSF are required in reliability analysis, and reliability sensitivity analysis does not need to
additionally calculate the LSF. Hence, the proposed method has high computational efficiency.
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Figure 4. Mean and standard deviation sensitivity index (MRSI and SDRSI) for different number of KL expansion terms M.

5 Summary

A reliability sensitivity analysis method considering spatial variability of soil (called RSA-KL-FORM-x) is
proposed in this study. In the RSA—KL-FORM-x, the Karhunen—Lo¢ve (KL) expansion method is employed to
realize the random field and the first—order reliability method (FORM) is employed to perform reliability analysis,
where the mean reliability sensitivity index (MRSI) y,.(y) and the standard deviation reliability sensitivity index
(SDRSI) ys(y) are functions of the coordinates in random field domain. Hence, the important regions of a geo-
structure model in reliability analysis can be effectively identified. An example of shallow foundation with
spatially various cohesion of soil shows that the RSA-KL-FORM-x can identify important regions, which can
provide a guidance for the treatment of geotechnical engineering. However, the proposed method is only applied
in a one-dimensional random field in this study, so its applicability of multiple multi-dimensional random fields
considered in complex geotechnical engineering problems should be further extended and investigated in future.
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