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Abstract: The present work deals with a probabilistic analysis of the bearing capacity of shallow foundation on spatially 
variable cohesive-frictional soils. The spatial variability of soil parameters is modelled by anisotropic random fields. 
The analysis of both the upper and lower bound of the bearing capacity is carried out using a random finite element limit 
analysis. The analyses carried out show that the results in the lower bound provide conservative estimation of the results 
in the mean value, and the upper bound provide conservative estimation of the standard deviation of bearing capacity. 
The combined approach, consisting of describing the bearing capacity using the probability distribution with the mean 
value obtained from the lower bound approach and the standard deviation obtained from the upper bound approach, 
allows for conservative, precise and efficient estimation of the probability of structural failure.  
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1 Introduction 
 
In recent decades, there has been a significant growth of interest in methods estimating the reliability of 
geotechnical structures. The latter is strongly associated with the modelling of spatial variability of the soil 
medium, which is considered the governing factor that influences the probability of failure of soil-bound structures. 
Nowadays a common practice is to model this variability by random fields. The need of including random fields 
in probabilistic analysis of geotechnical structures was even directly mentioned in annex D of the newest edition 
of the ISO 2394 (2015) code dedicated to reliability analysis. 
A particularly popular approach for reliability assessment of geotechnical structures is the random finite element 
method (RFEM, Griffiths and Fenton, 1993; Fenton and Griffiths, 2008). This technique utilizes random fields to 
model spatial variability of soil parameters. It consists of sequential mapping the values for large number of 
random fields realisations on part of the finite elements mesh, representing the soil medium in a numerical model 
of boundary value problem. The probabilistic analysis is performed within Monte-Carlo framework: the 
probability of failure based on assumed limit state function can be found by statistical analysis of the results of all 
Monte Carlo simulations (MCSs). The important advantage of this method is its universality, which enables 
probabilistic modelling of virtually any geotechnical structure that can be modelled with finite elements (FE). So 
far, it has been used to estimate the probability of failure of strip foundations (e.g. Fenton and Griffiths 2008, 
Pieczyńska-Kozłowska et al. 2015), slopes (e.g. Griffths & Fenton 2004), diaphragm walls (Sert et al., 2016, Kawa 
et al. 2021) as well as many other geotechnical structures. On the other hand, an undoubted disadvantage of this 
method is the long computation time that results from the computation time of a single MCS. With a typical number 
of N=1000 simulations (which is still too small to credibly estimate the probability of failure in case of ultimate 
limit state) and the average difficulty of the problem considered, the total computation time on a modern PC is 
between one and several days. Such a high computational cost significantly limits the use of the method in 
engineering practice. For this reason, more efficient alternatives, which are based, e.g., on the quasi-analytical 
kinematic method (e.g. Chwała 2019) or limit equilibrium method (e.g. Liu et al., 2019), are still being sought. 
One of the alternatives to RFEM, more efficient approach for modelling spatially variable soils, is random finite 
element limit analysis (RFELA). It is a modification of RFEM, which utilizes finite element limit analysis (FELA, 
Lyamin and Slone 2002a & Lyamin and Slone 2002b) instead of typical FE method (FEM) to solve individual 
simulations. FELA allows to determine rigorous estimation of both lower and upper bounds of bearing capacity 
as a constrained convex optimization problem, which is a much faster approach than traditional FEM. With the 
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additional use of adaptive meshing, these estimates, in successive iterations, become quite precise. Adaptive and 
nonadaptive algorithms of RFELA have been used for probabilistic modelling of foundations (eg. Simoes et al.,, 
2014; Ali et al. 2016), slopes (Ali et al., 2017) and some other geotechnical structures.  
The present work is another attempt to apply the RFELA to problem of the bearing capacity of strip foundation.
The Coulomb Mohr cohesive-frictional soil is analysed. Both friction and cohesion are modelled by anisotropic 
random fields generated with Fourier series method (FSM, Jha and Ching 2012). The lower and upper bounds of 
bearing capacity are determined using FELA formulations proposed by Lyamin and Slone (2002) and Krabbenhoft 
et al. (2005), respectively. These formulations were implemented by the authors in Matlab code. In each 
realization, the solutions for the lower and upper bounds were obtained using the commercial solver MOSEK. The 
influence of fluctuation scales on the probabilistic characteristics of bearing capacity assessments was investigated. 
As shown, the results of the lower bound can be used as a fairly precise and probably conservative estimation of 
the bearing capacity. To ensure conservatism in estimation, a combined approach was proposed that uses both 
upper and lower bound results and provides only slightly lower values of allowable load for the same value of 
failure probability. 

2 Modelling of soil parameters by random fields

In the present work, two soil parameters, ie cohesion c and the angle of internal friction φ were modelled by weakly 
stationary, anisotropic random fields. The fields were assumed to be not cross-correlated. Individual realizations
of the fields were generated using the FSM (Jha and Ching, 2012). In the FSM, the field is defined as a continuous 
function represented by a finite (truncated) number of Fourier series terms with random coefficients, which allows 
one to read the field values for individual realisations at an arbitrary point of the domain. This enables iterative
adoption of FELA mesh within a single field realization (adaptive FELA). Such adoption significantly improves 
the FELA results, narrowing the gap between the upper and lower bound solutions.
The 2D plane strain problem was analysed. The autocorrelation function for both fields was assumed to be of 
Gaussian type:
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where τx, τz are distances in horizontal (x) and vertical (z) directions, and θx, θz are scales of fluctuations (SOFs) 
for these directions, respectively.
The considered values of vertical and horizontal SOFs will be given in the following section; however, it should 
be noted that the smallest values used for both directions were identical, namely θx = θz = 1.0m. In the FSM method, 
the number of terms considered from the Fourier series describing the field increases for small values of the 
fluctuation scale. However, this number is much smaller for the Gaussian autocorrelation function than, for 
example, for the exponential function. The maximum number of Fourier series terms considered in this paper (for 
the mentioned values of SOFs) was app. 3700.
The parameters of the probability distributions were assumed as follows: the mean value and standard deviation 
for cohesion were assumed as μc=29.0 kPa and σc=7.0 kPa, respectively, and for the friction angle as μφ=12.41º 
and σφ=1.15º, respectively. Since the type of probability distribution was assumed to be lognormal and FSM 
generates only the normally distributed field, all the fields realizations for the parameter X (X ϵ{c,φ}) were actually
generated for its underlying normal distribution parameters μY, σY derived using the following formulas:
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and then the values of this random field read for a given realization at point x0={x0, z0}, RFY(x0), were transformed 
to values of the lognormally distributed field RFX(x0) using the following relation:

x x�RF RFX Y( ) exp( ( ))0 0 (3)

3 Numerical model analysed with FELA

The considered problem is the bearing capacity of the surface strip foundation on spatially variable cohesive-
frictional material. To solve the problem, FELA algorithms providing rigorous upper and lower bounds of the
solution in the case of a perfectly plastic soil model and associated flow rule were employed. Both FELA 
formulations used, i.e., lower (Lyamin and Slone, 2002) and upper (Krabbenhoft et al. 2005), assume triangular 
elements, linear shape functions for the fields approximated within the elements (stresses in lower bound 
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formulation and displacement velocities in upper bound formulation, respectively) and admissible (statically or 
kinematically, respectively) discontinuities of these fields between the elements. Both problems can be defined as 
the following optimisation problem:

σ p p σA 0� � 
 

fsubject to: = , ( ) 0
maximize 

(4)

where α is the optimized load multiplier, σ denotes the vector of stresses in all domain elements, A is the 
equilibrium matrix (containing also the boundary conditions), p and p0 is the optimized and constant part of the 
external load and f is a limit function, assumed here to be the Mohr-Coulomb one. Obtaining form (4) based on 
the finite element geometry of the mesh and the applied boundary conditions is not trivial. Appropriate 
transformations enabling its derivation for both formulations were implemented by authors in the Matlab 
environment.
The Mohr-Coulomb criterion in the plane strain state can be written as a second-order cone (SOC). For that reason,
the above optimisation problem can be assigned to the SOC class and as such can be successfully solved by a 
number of commercial and noncommercial optimisation solvers including e.g. sdpt3, Sedumi, or MOSEK. The 
last of the mentioned seems to be particularly efficient in FELA analysis (Podlich et al., 2014). This solver was
also employed in the present work. 
The width of the analysed footing was assumed to be 1 m. The footing itself was assumed to be rough and 
weightless. The unit weight of the soil was assumed as 20 kN/m3. As mentioned above soil friction and cohesion 
were described by a random fields. In fact, each triangular element was assigned a constant parameter value being
the average of the cohesion and internal friction fields over the area of the element. To calculate this average, the 
values of the field were read in the points lying in the centres of the three sides of each element, and the mean of 
those reads (which corresponds to the second-order Gauss quadrature average over triangular area) was assumed 
as the parameter value for the element. The boundary conditions for the problem domain are presented in Fig. 1.
The dimensions of the domain were assumed to be 10 m x 20 m. As verified, in none of the realisations the failure 
mechanism reached the side or lower boundaries of the area. 
For mesh generation, the Delaunay-based mesh generator for Matlab – MESH2D (Engwirda 2014) was used. In 
the corners of the foundation, ‘element fans’ (Lyamin and Sloan 2003) consisting of 30 elements with a vertex 
angle of 6 ° were used. The application of such ‘element fans’ significantly influenced the results of the lower 
bound. To further decrease the difference between the lower and upper estimates a procedure for adaptive mesh 
refinement, which was based on the value of the plastic multiplier obtained for the upper bound approach (Muñoz 
et al. 2009), was adopted. In a first step, a uniform mesh (except for the elements fans and their vicinity) with an 
average element size of 0.5 m (app. 5500 elements) was generated and for all the elements plastic multiplier values 
were determined. In the second step, a finer mesh with an average element size of 0.3m was generated. However, 
this mesh was no longer uniform: the function of its spatially variable density resulted from the distribution of the
plastic multiplier in the first step. In the subsequent steps, the 10% elements with the highest values of the plastic 
multiplier in the previous step were divided into four new elements. The total number of steps adopted was five: 
this number was a compromise between accuracy and efficiency. In the last step of the procedure, the number of 
elements (depending on the realization) was 9000-14000. For a sample realization of fields, the refinement
procedure is shown in Fig. 1.

Figure 1. Geometry of the model and mesh plot in the zoomed area for five steps of the adaptive mesh 
refinement procedure in one realization
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A total of five cases with different values of horizontal SOF, i.e. 1 m,,, 2 m, 5 m, 10 m and 100 m were analysed. 
In each of these cases, the vertical SOF was assumed to be 1 m. The fields modelling φ and c were generated for 
the same values of SOFs. In each of the cases analysed, the calculation of both upper and lower bounds of the 
bearing capacity was performed for N=1000 MCSs. The computation time for a single series (1000) of calculations 
was about 5 hours. The results of the analysis are presented in the next section. 

4 Results

The results of the analysis for all the analysed cases are presented in Fig. 2 in the form of histograms and fitted 
probability density functions (PDFs) of estimated normal distributions for both upper and lower bounds of bearing 
capacity. In individual columns, different cases of assumed horizontal SOF are presented, whereas the results for 
the successive steps of adaptive refinement are shown in subsequent rows. Both histograms and PDFs for lower 
bound are shown in the figure with blue colour. Analogously results for upper bound are shown with red colour.

Figure 2. Upper (red lines) and lower (blue lines) bounds of the bearing capacity of a shallow foundation

As seen, the results for different cases are characterized by relatively similar mean values. On the other hand, it is 
clearly visible that standard deviations (and thus the range of histogram values and the ‘width’ of PDF fit) increases 
for grater values of the horizontal SOF. Also, the influence of mesh adaptively is visible in the individual columns 
in the figure. After five iterations for all the analysed cases, the results for lower and upper bounds seem to be
practically identical.
The estimated values of the mean, standard deviation and coefficient of variation of the upper and lower bound of 
the bearing capacity of the analyzed foundation for all the adaptive refinement procedure are shown in Fig. 3. The 
results for different horizontal SOF θx are shown again in different columns. Also, the lower and upper bounds are 
again colored blue and red, respectively. As seen, although the mean of both the lower and upper bounds of the
bearing capacity slightly increases with increasing value of horizontal SOF, the relative differences between the
values obtained for the fifth step in the case of minimum (1m) and maximum (100 m) horizontal SOF are not 
greater than 7%. The relative differences between the standard deviations are much greater, up to 40%.
All the characteristics obtained for the final fifth step of the adaptive procedure, both for the lower and upper 
bounds of the bearing capacity, are summarized in Table 1. These values confirm that in the last step the
characteristics for upper and lower bounds are very similar. The differences between mean values and standard 
deviations do not exceed 4%.
Based on the distribution fits (for both upper and lower bounds) and the assumed typical value of probability of 
failure 7.23 x 10-5 (corresponding to the reliability index β=3.8) the allowable design loads for the foundation were 
calculated and are shown in Table 2. As seen, the value obtained using the lower bound based distribution in all 
the cases is lower than the values obtained using the upper bound based distribution. This means that probably 
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safe design values can be estimated from lower bound results. However, it is worth noting that the standard 
deviation of the exact solution (which lies between the lower and upper bounds) is probably larger than that 
obtained for the lower bound.  Furthermore, the results were estimated only based on N=1000 realizations and
thus the obtained fits do not allow for credible estimation of allowable loads for such low values of probability 
(see, e.g., Kawa et al. 2021). For this reason, a different, more conservative approach is proposed, namely 
estimating the allowable load value based on a new distribution with conservatively estimated (underestimated)
mean value obtained from lower bound results and conservatively estimated (overestimated) standard deviation 
obtained from upper bound results. The results of such a mixed approach are also shown in Table 2. The application 
of the proposed method for the determination of the allowable values should be considered as a fairly precise and 
(due to the high efficiency of the FELA method) quick estimate that can be applied in engineering practice.

Figure 3. Diagrams of mean value, standard deviation, and coefficient of variation as a function of the step 
of adaptive mesh refinement procedure for the following scales of fluctuations

Table 1. The mean values, standard deviations, and coefficients of variation for the lower and upper bound of the bearing 
capacity estimated based on the results of the the last (5th) step of adaptive mesh procedure.

Scales of fluctuations

Lower bound estimation Upper bound estimation

Mean value 
(kPa)

Standard 
deviation

(kPa)

Coefficient 
of variation

(%)

Mean value 
(kPa)

Standard 
deviation

(kPa)

Coefficient 
of variation

(%)
θx =1.0m, θz =1.0m 263.30 29.39 11.16 272.52 30.42 11.16
θx =2.0m, θz =1.0m 264.00 36.57 13.85 272.52 37.81 13.87
θx =5.0m, θz =1.0m 269.61 47.27 17.53 277.83 48.56 17.48

θx =10.0m, θz =1.0m 273.65 50.14 18.32 282.28 51.55 18.26
θx =100.0m, θz =1.0m 278.80 54.40 19.51 289.36 56.51 19.53

Table 2. Allowable load for β=3.8 obtained for LB FELA, UB FELA and mixed approach

Scales of fluctuations LB FELA
[kPa]

UB FELA
[kPa]

MIXED
[kPa]

θx =1.0m, θz =1.0m 151.60 156.92 147.70
θx =2.0m, θz =1.0m 125.04 128.85 120.32
θx =5.0m, θz =1.0m 89.97 93.29 85.08

θx =10.0m, θz =1.0m 83.11 86.39 77.75
θx =100.0m, θz =1.0m 72.07 74.60 64.05

5 Conclusions

In this study, the RFELA method was used to assess the bearing capacity of a strip foundation on spatially variable 
cohesive-frictional soil. The formulations proposed by Lyamin and Slone (2002) and Krabbenhoft et al. (2005)
implemented by authors in Matlab, together with MESH2D (Engwirda 2014) and the MOSEK solver were used.
Anisotropic random fields that model soil parameters were generated by FSM (Jha and Ching 2012). The results 
of the lower and upper bound of the foundation bearing capacity were estimated for five different cases of the
horizontal fluctuation scale. N=1000 MCSs were analysed for each of these cases.
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The analyses performed clearly show the effectiveness of the adopted mesh refinement procedure. Differences 
between mean values and standard deviations of the upper and lower bound bearing capacities estimated in the 
fifth step of mesh refinement do not exceed 4%.  
The proposed approach for the estimation of the allowable value for the bearing capacity consists of using the 
distribution with mean value estimated by lower bound results and standard deviation estimated by upper bound 
results. Such a combined approach allows both the probability of failure and the allowable load for a given 
probability to be estimated safely and efficiently. 
This study is preliminary. Currently, the authors are trying to improve the algorithm used. Some of the limitations 
that must be overcome are listed below. 

i) In the present study, according to approach formulated by Krabbenhoft et al. (2005) for upper bound
finite element limit analysis the constant strain elements were utilised. It is possible to obtain a better
agreement between the lower and upper bound by using linear strain elements for upper-bound limit
analysis (Makrodimopoulos and Martin, 2007). This approach is currently being tested.

ii) The reliability of design load values obtained using upper- and lower-bound results can be estimated
using e.g. subset simulations (Au and Beck 2001). This could probably allow for more precise
estimation of allowable load based eg. on lower bound estimation only. This is also a subject of
current development.
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