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Abstract: Reliability-based designing in geotechnical engineering represents a modern approach to estimating the probability 
of failure due to spatial variability of soil and rock properties as well as the errors and uncertainties related to measured
parameters and calculated designing variables. As spatial data are often used as inputs in models of spatially distributed 
variables, such as CPTu-based litho-mechanical models, the propagation of spatial uncertainty in model predictions becomes 
a critical issue even in engineering design. This is commonly known as model uncertainty and several different methods to 
handling it has been proposed in the literature. This paper proposes an efficient geostatistical simulation approach, based on 
the use of the Sequential Gaussian Co-Simulation, for uncertainty propagation assessment in the calculation of a Soil Behavior 
Index from raw CPTu profiles (i.e., qc, fs, u2). These measurements have been collected in a portion of the Bologna district 
(Italy) by the Emilia Romagna Region.
A Linear Model of Coregionalization was fitted to the matrix of experimental direct and cross-variograms of the input data, 
and one thousand realizations that honor the experimental data were provided. These realizations were used to calculate the 
corresponding values of the litho-mechanical subsoil index. As a result, the uncertainty estimates of subsoil lithology can be 
efficiently used within geotechnical designing of several structures so avoiding assumptions on probability distribution of 
natural materials that may in turn show site-specific hydro-mechanical behavior, which needs to be investigated in detail.
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1 General Aspects

To perform a geotechnical reliable design, spatial variability of soils and rocks and uncertainties related to the 
Engineering Geological Model (EGM) adopted cannot be disregarded. According to Phoon and Tang (2019) site
understanding refers to how well the ground measured mechanical properties are known while model 
understanding refers to the degree of confidence that a designer has in the subsoil model used to predict the 
geotechnical resistance. Thus, whenever an EGM is conceived it cannot be simply a deterministic and expert 
judgment-based model, but it is characterized by uncertainties known as model uncertainty. This latter involves 
two aspects viz.: (1) the bias in the mathematical expression that transforms the measured parameters into design 
ones and (2) the uncertainty associated with the variability of the soil and rock parameters in the prediction
equations. The need for the assessment of model uncertainty has been emphasized and considered in the current 
revision process of the Eurocodes (Lesny, 2017). A review paper by Lee and Chen (2009) identifies five categories 
of uncertainty propagation methods (UP): 1) the simulation; 2) the local expansion; 3) the most probable point; 4) 
the functional expansion; 5) the numerical integration. Hereinafter, the first category method has been used named
Sequential Gaussian Co-Simulation method (SGCS). It has been applied to propagate the uncertainty in the 
calculation of a Soil Behavior Index from raw CPTu profiles (i.e., qc, fs, u2) through a Linear Model of 
Coregionalization. This latter was fitted to the matrix of experimental direct and cross-variograms of the input 
data, and one thousand realizations that honor the experimental data were provided. These realizations gave the 
derived distribution of ISBT values which was used to calculate the mean and the standard deviation maps of ISBT.
The study area is the Po plain in the East part of the Bologna district (Italy).

2 Study area

The selected study area (Figure 1) is a 900-square-kilometer-wide portion of the eastern Bologna district, located 
in the southern part of the Po plain (Italy). From the geological standpoint, the Po plain is a tectonic depression, 
filled by hundreds-of-meter-thick continental and/or marine-transitional deposits (Amorosi and Farina 1995).
Within the study area, there are alluvial deposits made up of undifferentiated fine silty-sandy deposits (i.e. flooding 
plain), characterized by coarser (i.e. alluvial fans and paleo-channels) and finer (i.e. lacustrine lenses) geological 
bodies (ISPRA 2009a, 2009b). From a lithological point of view, these inclusions consist of sandy, gravelly, and 
silty-clayey soils. On one hand, sandy-gravelly alluvial fans are prevalent nearby the Apennine reliefs, in the south;
on the other hand, sandy paleo-channels become predominant moving northward. Conversely, fine lacustrine 
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lenses can be found all over the study area. It is worth pointing out that all the types of inclusion have shape, size,
and depth that can be predicted through direct investigations, within the whole subsoil volume.

Figure 1. Map showing the location and main geological features of the study area as well as the CPTus’
distribution within the selected domain. In legend: 1) alluvial deposits; 2) bedrock; 3) urban areas; 4) 

geostatistical domain; 5) CPTus’ locations.

3 Material and methods

3.1 Dataset

The dataset used in this research consists of 182 CPTus performed across a 900-square-kilometer-wide area and 
collected in a comprehensive database by the Regional Office for Territorial Protection and Development of the 
Emilia-Romagna region (http://geoportale.regione.emilia-romagna.it/it), subsequently made available by Di 
Curzio and Vessia (2021).

3.2 Sequential Gaussian Co-Simulation

To get a deeper insight into the propagation of uncertainty while using transformation equations, the Sequential 
Gaussian Co-Simulation (SGCS) method has been selected (Gooverts, 1997; Webster and Oliver, 2007; Chilès 
and Delfiner, 2012). It derives from the general Sequential Gaussian Simulation approach (SGS). This advanced 
geostatistical technique is one of the most straightforward and used among Conditional Simulation methods
(Delbari et al., 2009; Emery and Peláez, 2011; Nussbaumer et al., 2018), which are the simulation approaches that 
honor measured data. Unlike kriging methods, stochastic simulation techniques are devoted to assessing spatial 
uncertainty (Castrignanò and Buttafuoco, 2004). Furthermore, since these methods can preserve the spatial 
variability, which is instead smoothed in kriging methods, stochastic simulation approaches can be also used to 
obtain optimized maps of estimates (ASTM International, 2018).
SGS is based on the multi-gaussian assumption and the conditionally simulated values ( ) at each node of
the grid is obtained conditioning results with the Kriging estimator ( ), as follows:

(1)

where, is the simulated field calculated with the same variogram model as that of experimental data, while
is the kriging estimates obtained by considering the simulated values at the sampling points. In SGS, this

process is repeated several times by random seeds, which correspond to different paths through the data. As a 
result, several equiprobable representations of the spatial distribution of the considered variable can be obtained, 
namely, realizations, providing a statistical distribution for each node of the grid, instead of an estimated value and 
the corresponding error (i.e., as in kriging methods).
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As in this work we dealt with a multivariate case, the Kriging estimator in Eq. (1) with the Co-Kriging one, in fact
moves from SGS to SGCS. In this case, the simulation relies on the fitting of a Linear Model of Coregionalization 
(LMC) of the considered variables (i.e., qc, fs and u2), below represented in matrix notation (Wackernagel, 2003; 
Castrignanò et al., 2015; Di Curzio et al., 2019, Vessia et al., 2020a):

(2)

where, is the Coregionalization matrix of the LMC coefficients, which is symmetric and positive, is the
n x n matrix with direct variograms (i.e., diagonal elements) and cross-variogram (i.e., non-diagonal elements)
modeled as a linear combination of basic variogram functions, is the lag, is the spatial structure, and

is the spatial scale.
It is worth pointing out that, since a Gaussian distribution is required, non-Gaussian data transformation or 
standardization is needed. In this study, raw measurements of qc, fs, and u2 have been transformed through the 
Gaussian Anamorphosis function (Chilès and Delfiner, 2012). This function converts a Gaussian-distributed 
variable ( ) into a new variable ( ), whatever its statistical distribution, by fitting a Hermite polynomial 
expansion Hi(Y):

(3)

where, are the coefficients of the Hermite polynomials.
Once defined the Gaussian Anamorphosis function, the transformation from a non-Gaussian variable into a 
standardized one (i.e., the one required to use SGCS) is performed by inverting the function, as follows:

(4)

The selected estimation domain has a cell size equal to 500x500x0.5 m. All the geostatistical analyses have been 
performed using Isatis 2018, whose results have then been visualized through Isatis.neo
(www.geovariances.com/en/software/isatis-neo-geostatistics-software/).

3.3 Lithotype classification

Lithotype classes within the studied subsoil have been defined through the normalized Soil Behavior Type index 
(ISBTn) defined by Robertson (2009), which allowed following the spatial distribution of the classes listed in Table 
1 for all the 1000 realizations of qc, fs, and u2, estimated through the SGCS. This allowed obtaining an improved 
estimation of lithotypes within the considered subsoil volume as well as the statistical distribution of ISBTn values 
at each cell of the grid, to be compared to the qc, fs, and u2 ones to assess the uncertainty propagation.

Table 1. Soil Behavior Type classes as defined by Robertson (2009), with the corresponding ISBTn values.

Soil Behavior Type ISBTn Class
Gravelly sand to dense sand < 1.31 SBT2

Sands – clean sand to silty sand 1.31-2.05 SBT3
Sand mixtures – silty sand to sandy silt 2.05-2.60 SBT4
Silt mixtures – clayey silt to silty clay 2.60-2.95 SBT5

Clays – silty clay to clay 2.96-3.60 SBT6
Organic soils – clay > 3.60 SBT7

ISBTn values have been calculated through the following equation:

(5)

Where, is the normalized tip resistance, is the friction ratio, 

coefficient equal to 0.8 (i.e., average value), and and Ic is 
the soil behaviour type index according to Robertson (1998). These are the terms inside the expressions, whereas 
�’v0 and �v0 are the effective and total lithostatic stresses at each depth, respectively.
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3 Results and discussion

The nested directional LMC described in Table 2, consisting of a combination of scale-dependent variabilities, 
and the SGCS approach allowed to reconstruct 1000 three-dimensional realizations of the raw measurements.

Table 2. Features of the Linear Model of Coregionalization related to the Gaussian transformed variables

Variables Horizontal LMC structures Range (m)

gqc, gfs, gu2

Spherical 10
Spherical 1200
Spherical 12000

Variables Vertical LMC structures Range (m)

gqc, gfs, gu2

Spherical 2
Spherical 6
Spherical 12
K-bessel > 100

This large amount of data, in turn, has been used as input variables of Eq. (5), providing the same number of 
realizations of the selected output variable (i.e., ISBTn). Besides the optimized 3D models (i.e., mean values of 1000 
realizations) of both measured (i.e., qc, fs, and u2) and calculated (i.e., ISBTn) variables (Figure 2), which depict the 
geo-lithological features of the considered Po plain portion, it was possible to investigate how the uncertainty of 
measured variables propagates at each point of the selected model domain. Histograms in Figure 3, corresponding 
to two points characterized by two different SBT classes, show that ISBTn values of coarser lithotypes (P2), which 
are generally described by very high and variable qc, fs and u2 values, seem to be more uncertain than the finer 
lithotypes’ ones (P1). The intrinsic variability of the fan-shaped geological body at P2 location can account for 
this evidence. In addition, the location and density of actual measurement might also play a significant role in 
uncertainty propagation.

Figure 2. Optimized 3D models of qc, fs, u2, and ISBTn, represented by the mean values of the 1000 
realizations.
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Figure 3. Histograms comparing the statistical distribution of equiprobable values of input variables (i.e., qc,
fs, and u2) with the output ones (i.e., ISBTn), both for the silts mixtures at 5-meter depth (P1) and the sandy 

gravelly deposits at 10-meter depth (P2) (Figure 2).



296 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

4 Conclusions

Applying the Sequential Gaussian Co-Simulation to CPTu data through fitting a Linear Model of 
Coregionalization allowed thoroughly assessing the uncertainty propagation when empiric equations are used to 
derive variables of interest from raw data (measured). In detail, 1000 realizations of qc, fs, and u2, obtained through
SGCS, have been used to calculate the same number of realizations of ISBTn, providing an optimized 3D model of 
lithotypes’ distribution as well as a quantification of the uncertainty associated with the transformation expression.
The same methodological approach can be used to quantitatively assess the uncertainty propagation for other 
critical design variables, which are generally obtained using empirical equations and raw measured data.
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