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Abstract: Random fields are widely used for describing the soil spatial variability in geotechnical engineering. The
consideration of stochastic variability with spatial dependence in soil parameters is a complex problem, which renders the
analysis of hundreds or thousands of random variables. Thus, it is not usually performed, and simplifications are often
adopted. This article presents four different analyses to investigate the influence of the autocorrelation length on the bearing
capacity of a shallow strip foundation, when random fields are explicitly considered. The studied soil property is undrained
shear strength (Su) randomized with the random field theory. The Random field approach integrates the Karhunen-Loeve
expansion method with Monte Carlo simulations (MCS) to develop a probabilistic analysis. The software OPTUM G2 which
follows the finite element limit analysis (FELA) method was used to perform all deterministic and field analysis.
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1 Introduction

Geotechnical engineers are usually faced with large uncertainties in situ conditions. Uncertainties are often
attributed to the inherent variability of soil mass due to the intrinsic randomness of soil formation processes, the
statistical uncertainty due to the limited number of site investigations and the errors in measurement devices and
data processing (Phoon and Kulhawy 1999; Baecher and Christian 2003; Papaioannou and Straub 2017). Civil
structures are particularly affected by such uncertainties. A correct representation of the soil inherent spatial
variabilities is an important task in probabilistic analyses. The random field theory is considered the most
sophisticated way to model this soil feature and has been widely applied in different geotechnical structures
(Pouya et al. 2014; Mouyeaux et al. 2018; Guo et al. 2021). This article is dedicated to addressing numerical
simulations to investigate the influence of random fields correlation length on the bearing capacity of a shallow
strip foundation. Karhunen-Loeve expansions are used to represent the spatial random fields, and reliability
analyses are carried out using Monte Carlo Simulations.

2 Problem Setting

2.1 Performance function

From the probabilistic perspective, failure modes are mathematically described by a performance function g(X).
The random geotechnical parameters of the problem are grouped in a random variable vector X= {X}, Xo,..., Xu}.
In the space of random variables, the domain is divided into: {x:g(X) <0} is the failure domain (Dy) and the
safety domain (Ds) is represented by {x:g(X)>0}. One realization of this vector is denoted by x. In an “n”
dimensional hyper-space of variables, the limit state function g(x)= 0 is the boundary between safe and failure

domains. The probability of failure (Py) is given by:
Py = Plg(x)<0]= [ fx(x)
5 (1)

where fx(x) represents the joint probability density function of X.

The minimal distance of the limit state function g(y)= 0 to the origin is the so-called reliability index (5),
and the point over the limit state with minimal distance to the origin is called design point (DP). The limit state
function is approximated by:

Py = ®(-f) @)

where ®@(.) is the standard Gaussian cumulative distribution function (Siacara et al. 2020a, b, 2022a).
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2.2 Random variable (RV) approach

A spatially variable soil property can be modelled with a single random variable X. The property at a specific
location is not explicitly modelled and the inherent variability of the soil property within the area of interest is
represented by the probability density function (PDF) of X, fx. It means that the soil is assumed to be
homogeneous (Guo et al. 2021). This corresponds to the classical statistical approach, which is based on
modelling the variability within a population into a probabilistic distribution (Papaioannou and Straub 2017).

2.3 Random field (RF) approach
A more accurate but also more demanding approach is to model spatially variable properties at each location
explicitly. In this approach, the property is modelled by a RF X(z), which represents a R} at each location g
(Rackwitz 2000; Phoon 2008). The RF is usually modelled by the marginal distribution at each location Fx and
the auto-correlation coefficient function px. Usually, the marginal distribution of soil parameters is modelled by
a non-Gaussian distribution model.

The RF can then be expressed as a function of an underlying Gaussian field U(z) with zero mean and unit
standard deviation, through application of the following marginal transformation:

X(z)=Fy'[oU(2))] 3)

where Fy' is the inverse of the marginal CDF of X(z) and ®(.) is the standard normal CDF. The transformation

of Eq. (3) implies that the joint distribution of the RVs for any collection of points in the spatial domain is
described by a Gaussian copula, also known as the Nataf distribution (Der Kiureghian and Liu 1986). In general,
the specification of the correlation structure of U(z) in terms of the one of X(z) involves solving an integral
equation (Papaioannou and Straub 2017).

In order to numerically represent the continuous RF X(z), it is necessary to discretize it with a finite set of
RVs gathered in a vector X. Several methods have been proposed for the discretization of RFs (see (Sudret and
Der Kiureghian 2000) for a comprehensive review). Depending on the correlation structure of the RF and the
discretisation method used, the number of RVs in X can be considerable. A method that is optimal in terms of the
average mean-square error in the discretization, and hence can lead to efficient RF representation with relatively
small number of RV, is the Karhunen—Loeve expansion (e.g. (Ghanem and Spanos 1991; Betz et al. 2014)).

2.4 Karhunen-Lo¢ve expansion
Let X(z, ®) be a random field, where z € D defines the physical space and @ € Q defines the probability space.
The correlation structure of a random field is modeled by the covariance function, denoted by Cyx (s, t), where s, t
€ D, are bounded, symmetric and positively defined.

Several random field generation methods are available (see e.g. (Fenton and Griffiths 2008)). In OPTUM
G2 (OptumCE 2009), the Karhunen-Loeve expansion method is used. This method is convenient as it provides
analytical solutions for the exponential covariance function. Using Mercer’s theorem (OptumCE 2009), the
covariance function can be decomposed according to

Cx(s,t)= ixifi (s)Fi(t) 4)

where Ai and fi are, respectively, the eigenvalues and eigenfunction of the Cx. Since the above sum has to be
truncated to a finite number of terms, a significant concern is that the simulated variance will be reduced. In
order to control this reduction, the eigenvalues are sorted in descending order and the number of terms, #, is
decided on by the eigenvalues having decayed sufficiently to satisfy the condition.

3 Application problem and boundary conditions

In this section, random field analysis is applied to a common foundation engineering example: bearing capacity
of a shallow foundation. The geometry, equation of performance function, random variables, and problem
explanation are given as follows.

The finite element limit analysis (FELA) method was used to perform all deterministic and field analysis.
The FELA method embraces the advantages of finite element model and the classic limit analysis methods, and
is particularly suitable for the analysis and design of geotechnical stability problems (Sloan 2013; Ji et al. 2021).
The best size of the model has been examined and tested to ensure that the failure zone does not exceed the
boundary of the model. The surface ground can move freely and the bottom is fixed in all directions. The Tresca
criterion was used in the analysis and the random field information is presented in Figure 1 and Table 1. The
undrained shear strength (Su) is modelled as a Random Field. Additional deterministic parameters of the soil are
Modulus of Elasticity (£.)=30.0 [MPa], Unit weight (y)= 10.0 [kKN/m?], Earth Pressure Coefficient (ko)= 0.5. The
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Unit weight of the rigid strip footing (y.) is 23 [kN/m3]. A constant load g of 1.0 [kN/m?] is applied above of the
foundation. The width and high of the numerical model are shown in Figure 1.

The OptumG2 (OptumCE 2009) provides three options for FELA of the shallow foundation stability,
namely, the upper bound (UB), the lower bound (LB), and the mixed principle (Mixed). In this case, the UB and
LB are used to analyze the footing bearing capacity. An automatic adaptive mesh refinement is used in this
model, and greater power dissipation intensity, the denser the mesh as is shown in Figure 2. In OptumG?2, the
Karhunen-Loeve expansion method is used. The Prand g were found using MCS, with 1000 realizations.

Table 1. Probabilistic parameters of the soil property.

Case of study A B C D
Material Undrained shear strength — Su [kPa]
Statistical moments
Distribution Lognormal (LN)
Mean - u 7z=0 with 10 [kPa]

z=-6 with 28 [kPa]
Coefficient of variation — COV (%) 30
Autocorrelation length (m)
Horizontal (L) 50.0 1.0 1.0 50.0
Vertical (L) 1.0 1.0 50.0 50.0
Modelling approach Random fields

1.0 kN/m
0+ EREER Su=10.0 kPa

- Rigid strip footing
2t cy

-4+ COV=30%

CLx

Su= 28.0 kPa

8 6 4 2 0 2 4 6 8
Figure 1. Model used in the analysis.

4 Shallow foundation results

Initially, a deterministic analysis with mean values of Figure 1 and Table 1 is carried out. The UB gives a
bearing capacity (g.)= 94.27 [kN/m?] and the LB present ¢.= 91,83 [kN/m?]. The mean value between UB and
LB is g¢.= 93,05 [kN/m?], and the best estimate for collapse load is g.= 93,05 +£1.3%. The difference of results
between UB and LB could be closer using a smaller mesh (independently of the strategy used), but it would be
more computationally demanding. In whatever case, the mean value of g. is the same. In this study, the
adaptative mesh is applied and presented in Figure 2.

The results of the UB for the total displacements U and collapse solution with intensity of plastic multiplier
are presented in Figure 2 a and c, respectively. In this case, the results of displacements U are only a
representation. The load displacement curve needs to be performed using the classic Multiplier Elastoplastic
analysis which is a combination of the Limit Analysis and Elastoplastic analysis types, this will not be our case
of analysis.

The vertical collapse extent of the failure mechanism is approximately 0.7 of the base foundation (B). These
initial analysis helps to see if the influence of the vertical autocorrelation length (CLy). The case A, B, C and D
are studied modifying the horizontal and vertical autocorrelation length. The Figure 3 a, b and c represent a
random field simulation of Su for the case A, B and C, respectively. The random field variation of the Su
property in the collapse surface produce different surfaces for every MCS simulation. The limit state function
describing failure of the foundation is represented by the Eq. (5). The geometry and values are defined in Table 1
and Figure 1. Although Su is variable in the deep, this equation helps in this study.

g(X)=q,-¢ (5)

The g is assumed as 61.4 [kPa]. The relationship between both values represents the factor of safety FS= ¢./61.4.
In the deterministic case, the mean value F.S= 1.51 is assumed.
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Figure 2. Results of UB for (a) Total displacements U [-]; (b) Undrained shear strength Su [kPa] and (c) collapse solution
with intensity of plastic multiplier.

Figure 3. A random field simulation of Su for the Case: (a) A; (b) B; (¢) C and (d) D.

The results reported are based on the mean value between the UB and LB for each simulation. The best fit
(Figure 4 a, b, ¢ and d) of the ¢. is the Lognormal (LN) distribution which follows the Su distribution, as
expected. The lowest probability of failure (Py) is presented in the case B, and the highest Pris presented in the
case D as shown in Table 2 and Fig 4 b and d. This observation follows the differences in terms of
autocorrelation length between both cases. In case D, Pris larger by the large autocorrelation distance. It could
be represented as a RV analysis. An opposite behavior is observed in case B by the lowest autocorrelation

distance. The mean factors of safety (urs) are very similar to the deterministic FS, the closer value is when the
autocorrelation length is highest.

Table 2. Reliability results of the three analyses.

Analvsi Failure probability Statistical moments of F'S
nalysis - .-
Y P;(x102)  COV[%] Mean Standard deviation
A 8.5 20.38 1.42 0.34
B 1.1 30.20 1.35 0.18
C 4.7 30.59 1.39 0.25
D 14.5 8.95 1.50 0.50
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Figure 4. Random field Su result for the Case: (a) A; (b) B; (¢) C and (d) D.
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Convergence plots allow us to know if the number of simulations is enough. In this study, the cases C and
D are presented in Figure 5 a and b, respectively. In the case D, the accuracy of the Prcan be obtained with as
600-700 runs. The case C, on the other hand, requires somewhat more runs to be determined with the same
degree of accuracy of case D.
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Figure 5. Convergence of MCS simulation in terms of number of samples and Failure probability (Py) and 95% confidence
interval: (a) Case C, and (b) Case D.

In reliability analysis using high-fidelity numerical models, computational cost and the method employed
are important factors, which determine whether the analysis is feasible or not (Siacara et al. 2022b). In this study,
a common desktop computer was used, with a processor speed of 1.8 GHz and RAM memory of 8 GB. The
computational cost for deterministic analysis was less than 1 minute, and 6 hours for every case (A, B, C and D)
of study using the random field analysis (RF).

5 Conclusions

This paper presented a numerical simulation approach to investigate the influence of the autocorrelation length
of random field on the bearing capacity of a shallow strip foundation. The studied soil property is undrained
shear strength (Su) randomized with the random field theory. As the Monte Carlo simulation (MCS) is a robust
approach that can capture the inherent variability of soil properties in classic geotechnical problems, in this case,
1000 simulations are carried out to determine the statistical properties of the bearing capacity of the footing.

In OPTUM G2, the Karhunen-Loeve expansion method is used. The results reported are based on the mean
value between the UB and LB for each run. This method is convenient as it provides analytical solutions for the
exponential covariance function.

In this case, the mean factor of safety (urs) on a spatially variable soil profile is always lower than the
deterministic factor of safety (FS) obtained from a constant mean value. It also has demonstrated that an increase
the degree of heterogeneity, increases this deviation.

In all cases, the best fit of the g, is the Lognormal (LN) distribution which follow the Su distribution. The
lowest probability of failure (Py) is presented in the case B, and the highest Pris presented in the case D. This
observation follows the differences in terms of autocorrelation length between both cases. In the case D, Pris
large by the autocorrelation distance. In this case, the random field could be represented as a RV. The mean
factors of safety (urs) are very similar to the deterministic £S5, the closer value is when the autocorrelation length
is larger.
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