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Abstract: The geotechnical data available to offshore infrastructure designers is invariably sparse, necessitating the use of
engineering judgement in deriving (or estimating) soil design properties at untested (unsampled) locations. This task becomes
more challenging when dealing with seabeds having a complex (layered) soil stratigraphy. Recent (and growing) interest in
data-centric methods and their application to sparse datasets has seen progress in the spatial interpolation/extrapolation of
geotechnical data using statistical and analytical approaches. This paper describes a case study involving one such approach
where Bayesian Compressive Sensing and Markov Chain Monte Carlo methods are applied to a sparse two-dimensional PCPT
dataset obtained from an offshore deep-water location comprising a layered (non-uniform) seabed. Results from the study are
used to examine the ability of the considered approach in addressing soil variability and uncertainty in PCPT parameter
estimation and highlights the difficulty in applying such approaches to complicated real-world settings.
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1 Introduction

In an offshore project, the piezocone penetrometer test (PCPT) is a common industry-accepted approach for
characterising seabed sediments. The number of PCPTs performed as part of a site investigation either for an
offshore development (which may comprise fixed or floating wind turbines or platforms, or fixed subsea
structures) or along a pipeline or cable alignment is often limited by technical and operational constraints, as well
as high costs — and the amount of data available to support design is almost always sparse. In addition, layouts or
alignments may change after the investigation and individual PCPT locations may no longer align with key
infrastructure. Therefore, foundation designers are often required to employ engineering judgement in using the
available data (at ‘sampled’ locations) to select design PCPT profiles, and by extension engineering parameters,
at untested (or ‘unsampled’) locations. The consequential risk to offshore infrastructure fabrication, installation
and performance can be significant.

Ongoing improvement in off-the-shelf computational capability has seen growing interest in the application
of data-centric methods to analyse and use measured data, with recent publications describing methods for
interpolation (and extrapolation) of data via statistical and analytical approaches. One particular method proposed
by Zhao et al. (2020) combines Bayesian compressive sampling (BCS) with Markov Chain-Monte Carlo
techniques in a two-dimensional (2D) spatial framework, allowing for a more formal treatment of uncertainty in
the estimation of parameters at unsampled locations.

Building on a previous study that examined the application of this particular ‘BCS’ method to select
geotechnical design properties and the potential impact on foundation sizing (O’Neill et al. (2022)), the same
method is applied in this paper to a new sparse 2D PCPT dataset obtained from an offshore location — but where
the seabed has a complex (layered) soil stratigraphy. A series of example analyses are used to highlight the manner
in which the method incorporates uncertainty in estimating PCPT profiles at unsampled locations. Through
examination of the analysis results, this paper identifies strengths and weaknesses of statistical methods and their
ability to mitigate risks associated with uncertainty in soil parameter estimation. Noting that a future goal of this
work is to compare the BCS method with other existing advanced statistical approaches and/or develop new
approaches, the objective of the paper is to highlight the challenges faced by foundation designers in applying
advanced statistical data-centric approaches to complex real-world settings.

2 PCPT Data
2.1 Overview

The field PCPT data considered in this study were gathered at a deep-water site situated offshore north-west
Australia. Figure 1 presents a layout of the survey area showing the locations of the five PCPTs (PCPT1 to PCPT5)
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considered in this study. The tests were performed at near-regular intervals along the : Survey line
survey line, with a horizontal distance (x, where PCPT1 is located at x = 0 m) of F
142 m separating the outer PCPTs. Each test was performed at a constant rate of

PCPT5
(x=142m)

penetration (0.02 m/s), with data recorded continuously at regular depth increments PCPT4 25m
(Az) of 0.02 m. A geotechnical laboratory testing program was performed on soil 2'5 (x=107m) I’Sm
samples obtained from the site. Interpretation of the field and laboratory data & | B
indicated the sediments across the site comprise high plasticity carbonate muddy silts &’ PCPT3
and silty muds, with occasional localised thin lenses of carbonate silty/muddy sands. € F (x=72m)
Figure 2 shows profiles of the field-measured (sampled) cone resistance () ZE 4 (PC§g2)
X= m

and pore pressure (uz-r) versus depth below the mudline (z) obtained at the PCPT1 to
PCPTS5 locations down to 20 m depth, together with the corresponding inferred F
profiles of measured net cone resistance (qnet-f= qe-f+ U2-f[1 — 0] — Gvo, Where T
oL = cone tip area ratio and ovo = total in situ vertical stress) and excess pore pressure L I N P
ratio (Bq-r = [U2-r — yw z] / qnet-r, where yw = unit weight of seawater). The data indicate Easting (mE)
that between the mudline and approximately 8 m depth qnet.r and Bg.r are reasonably

uniform across the survey line (i.e. as x varies), with relatively lower quecrand higher ~ Figure 1. PCPT locations.
Bq-r values inferring the presence of silts and carbonate muds. Extending beyond

around 8 m depth gnert and Bgf show significant variability, with abrupt increases in qnetf and corresponding
reductions in By (and vice versa) at varying depths signifying an overall increased sand fraction and the presence
of silty/muddy sand lenses. Notably, there is no easily discernable trend in the depth intervals of these various soil
units (layers) with respect to horizontal position along the seabed.

PCPT1
(x=0m)

2.2 Sampled PCPT data scenarios
For this study three different ‘sampled data’ scenarios were considered as input to the BCS analysis:

® Run 1 considered qc.r and uz-r from all five PCPTs.

® Run 2 considered qcr and uz-r from PCPT1/3/5 (three PCPTs), excluding PCPT2 (x = 38 m) and PCPT 4
(x =107 m).

® Run 3 considered qc-r and uz-f from PCPT2/4 (two PCPTs), excluding PCPT1 (x =0 m), PCPT 3 (x =72 m)
and PCPT 5 (x = 142 m).

Note for Run 2 and Run 3 data from the excluded PCPTs were assumed to be unseen (unsampled).

2.3 Standard assessment of PCPT data for design

A ‘standard’ (traditional) approach to assessing PCPT data as part of the geotechnical design of subsea
infrastructure often entails the identification and generation of simplified representative profiles of the data versus
depth. The nature of a given profile (relative to the data) is generally dependent on the type of design assessment
the profile will be applied to. For foundation capacity (stability) a ‘low estimate’ (LE) of the inferred soil strength
would be considered, for foundation installation (e.g. mudmat skirt penetration, suction anchor installation) a ‘high
estimate’ (HE) of the inferred soil strength would be used, while for serviceability requirements (e.g. foundation
settlement) a ‘mean’ (or ‘best-fit”) of the inferred soil strength (or stiffness) would be more appropriate. The LE
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Figure 2. PCPT measured cone resistance, pore pressure, net cone resistance & excess pore pressure ratio versus depth.
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and HE profiles are often selected based on corresponding quantile regression (QR; e.g. Uzielli et al., 2019) or
percentile profiles of the data. The point to note is in general terms these simple design profiles usually apply
across the full survey area (or line) and are independent of horizontal location (in this case represented by x).

An example of the standard PCPT data assessment approach is presented on Figure 3a, which shows the
gretf versus depth profiles for the Run 1 sampled data scenario (i.e. all five PCPTs). Included on the figure is the
corresponding proposed piecewise-linear ‘Design-Mean’ net cone resistance (quet-am) profile, which was generated
by minimising the ‘sum-of-squares’ of the difference between the mean of the natural log values of qgnetr at each
depth interval and the natural log of the corresponding Design-Mean value. Natural log values were adopted since
log-normal distributions are recognised as a reasonable statistical model for soil (and geological) properties
(Lacasse 1994; Griffiths et al. 2009) and ensure non-negative estimated net cone resistance values in the BCS
analysis (see Section 3). Figure 3a also shows proposed piecewise-linear design bounds to the et data, with the
LE represented by a nominal 10" quantile regression (QR10) profile (qnet-daqrio) and the HE represented by a nominal
90" quantile regression (QR90) profile (qnet-dqr90). Note that for this study the Design-Mean, QR10 and QR90
profiles were each limited to a nominal maximum of twelve ‘layers’ across the 20 m depth interval.

2.4 Variability of PCPT data
In addition to the range of measured net cone resistance inferred by the design QR10-QR90 profiles, the variability
of gnet-r across the site may also be expressed in terms of the coefficient of variation (COV) defined as the ratio of
the standard deviation versus mean of the data. The top of Figure 3b shows a histogram of the same (complete;
z<20m) Run 1 dataset in terms of the natural log of [qnet-f/ qnet-am], together with the corresponding normal
distribution (ND) of the data which has a COV of 0.32. Compared to the ND the data has a slightly more
pronounced peak about the mean. It is noted the kurtosis value of the (full) Run 1 dataset equal to 4.7 is slightly
higher than the ND ‘reference’ value of 3.0, which in turn implies a greater proportion of the variance in
Ln [qgnet-f/ qnet-am] s the result of infrequent large deviations rather than frequent small deviations (Westfall, 2014).
Noting the earlier observation regarding the greater variability in gnet.r beyond 8 m depth, Figure 3b also shows
separate Run 1 dataset histograms for z < 8 m (COV =0.19) and z > 8 m (COV = 0.38).

For reference, considering the complete (z <20 m) Run 2 and Run 3 datasets the corresponding ND fits to
Ln [qnet-t/ qnet-am] give COV values of 0.29 and 0.22 respectively. It is interesting to note the COV decreases as the
number of PCPTs (i.e. amount of available gnet-f) also decreases. For the situation where the seabed comprised a
single soil unit (i.e. no layering) it would be expected the COV would not change discernibly as the number of
PCPTs decreased. However, in this scenario where various soil units (layers) were detected at different (non-
uniform) depth intervals across the survey line, as the number of PCPTs increases the mismatch between the soil
layer boundaries also increases, which is reflected by the increasing COV.

3 BCS Analysis of PCPT Data

The BCS approach as proposed by Zhao et al. (2020) for interpolating (and extrapolating) sparse geotechnical data
allows for the incorporation of uncertainty in the estimation of geotechnical properties at unsampled locations.
The method is simple to code and implement, and the algorithm is computationally efficient. In addition, the
approach is able to accommodate ‘non-stationary’ data — that is, soil stratigraphies comprising multiple soil types
(units) with spatially varying statistical properties — which in a ‘real-world’ context is advantageous over other
approaches that can only consider ‘stationary’ data (where the statistical properties of the soil do not change).

3.1 Consideration of PCPT measurement uncertainty

The BCS analyses undertaken for this study included an estimate of measurement uncertainty associated with the
PCPT qcr and uz-r data using the method proposed by Peuchen and Terwindt (2015). Consideration was given to
uncertainty stemming from force and pressure sensor measurements, geometry errors, ambient and transient
temperature and pressure effects and measurement offsets (relative to the mudline). The estimated total (combined)
uncertainty was assumed to be normally distributed about the measured (mean) qef or uzf value with a standard
deviation expressed as a function of qe.r or uz.r. Uncertainty associated with the measurement or application of
other analysis parameters, including the cone tip area ratio (o), total in situ vertical stress (ovo) and unit weight of
seawater (yw), has not been accounted for at this time.

3.2 BCS analysis parameters

A pair of 2D BCS analyses (one considering each of qe-r and uz-r as input data) were undertaken for each of the
three sampled data scenarios outlined in Section 2.2. As mentioned previously, an objective of the study was to
apply the BCS method to the interpolation (within the PCPT spatial envelope) and extrapolation (outside the PCPT
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spatial envelope) of measured data; one reason for extrapolating beyond the outboard PCPTs is to allow for the
subsequent 2D analysis of foundations centred at one of these outboard PCPTs. Noting the near-regular horizontal
(x) spacing of PCPTs along the survey line for each sampled data scenario (i.e. x-spacing range of 34 m — 38 m
for Run 1, and 69 m — 72 m for Run 2 and Run 3), each BCS analysis extended horizontally across the survey line
and beyond the outboard PCPT locations a distance of approximately one half of the corresponding PCPT
x-spacing. Hence, the Run 1 analyses extended from x =-17 m to x = 159 m, the Run 2 analyses extended from
x=-35m to x=177 m, and the Run 3 analyses extended from x =0m to x =142 m. All analyses extended
vertically from the mudline to 20 m depth and used uniform horizontal and vertical spatial increments of
Ax =1.0 m and Az = 0.02 m respectively. The BCS analyses of qc.radopted the natural log values of the input data,
while the analyses of uz-r adopted standard (non-log) input values.

Each BCS analysis comprised a total of 50,500 iterations. Prior to commencing the analysis, a set of random
normally distributed measurement uncertainty values was added to the input ge-f or u-r data. Upon commencement
each analysis underwent an initial period of numerical stabilisation, and hence the results from the initial
500 iterations were discarded. In order to ensure the final results were statistically independent, the results from
every 100" iteration (from the remaining 50,000 iterations) were saved while those from the other iterations were
also discarded. Furthermore, immediately after a set of analysis results was saved and prior to commencement of
the next 100 iterations, a new set of random normally distributed measurement uncertainty values was added to
the input qefuzs data. Therefore, upon completion each BCS analysis produced 500 independent ‘sets’ of
estimated cone resistance (qe-be) Or pore pressure (uz-be) across the full corresponding z-x cross-section.

3.3 BCS analysis results — net cone resistance
Results obtained from the Run 1 (five PCPT) BCS analyses considering qc.r and uz-r are presented on Figure 4 as
example profiles of the estimated net cone resistance (qnetve, ‘BCS-Estimate’, calculated as
Qnet-be = Je-be T U2-be [1 — 0] — Gvo) versus depth (z) at x = 38 m (coincident with PCPT2), 55 m (midway between
PCPT2 and PCPT3), 72 m (coincident with PCPT3), 90 m (midway between PCPT3 and PCPT4) and 107 m
(coincident with PCPT4). The example gnetbe profiles correspond to the 50%, 150, 250, 350 and 450™ result
sets (out of a total of 500 sets) output from the analyses. Included on the plots are the corresponding mean
(Qnet-bm, ‘BCS-Mean’) and 10" and 90™ percentile (qnet-bpio-bpoo, ‘BCS-P10-P90’) estimated net cone resistance
profiles calculated from the 500 result sets, while Figure 4a, Figure 4c and Figure 4e also show the respective
PCPT Quett profiles. At the PCPT locations (x = 38 m, 72 m and 107 m) quet is measured (known; i.e. gnet-f), and
hence the corresponding estimated values are considered to be reliable — as evident by the similar quet-be, qnet-bm,
Qnet-bp10-bpoo and qnet-f profiles. Note the small (but non-zero) range in gnet-ve inferred by the gnet-bpro-bpoo profiles at
the PCPTs originates from the inclusion of PCPT measurement uncertainty. Conversely, at x = 55 m (Figure 4b)
and x = 90 m (Figure 4d) no information on qpet.r is available, and therefore gnet-be is considered to be less reliable
(more uncertain) — as evident by the wider gnet-ve range inferred by the gnet-bp10-bpoo profiles.

Further results obtained from the Run 1 BCS analyses are presented on Figure 5a and Figure 5b as z-x heat
maps showing the mean (qnet-bm) and COV (qnetbeov) of the estimated net cone resistance respectively (where
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Figure 4. Run 1 (x5 PCPT) BCS analysis results — comparison of estimated, mean estimated, P10-P90 estimated & measured
net cone resistance versus depth.

Qnet-beov = [(net-bsd / Qnet-bm] and qnet-bsd 1S the standard deviation of quetve). The PCPT locations are indicated on the
maps. The gnetbm map in particular provides an informative illustration of the overall soil unit structure across the
survey line inferred from the full (five PCPT) qgnerr dataset presented on Figure 2c. Additionally, the results
presented on the gnet-bcov map are consistent with those shown on Figure 4, in that the ‘variability-reliability” mix
of the estimated net cone resistance values is low-high at sampled locations and relatively higher-lower at
unsampled locations. It can also be seen that gnet-beov increases as the horizontal distance (x) from the nearest PCPT
(sampled) location also increases.

Similar z-x heat maps showing quetbm and gnetbeov determined from the BCS analyses are presented on
Figure Sc and Figure 5d respectively for Run 2 (three PCPTs) and on Figure 5e and Figure 5f respectively for
Run 3 (two PCPTs). Note all maps included on Figure 5 use consistent axes and scales to allow direct comparison.
The gnetbm maps highlight the change in the inferred soil unit structure across the survey line that occurs as the
number of PCPTs (volume of available sampled data qnet-r) decreases (and the spacing between PCPTs increases);
the overall reduction in the fidelity of qnet-bm is also easily discernable. Correspondingly, the quet-beov maps highlight
the increasing variability in qnet-be With decreasing gnet.f volume and increasing PCPT spacing.

Useful insight into the predictive functionality of the BCS method and overall structure of the analysis results
is presented on Figure 6, which shows profiles of the Run 1, Run 2 and Run 3 BCS mean and 10%-90" percentile
estimated net cone resistance (net-bm and gnet-bp10-bpoo respectively) versus horizontal distance along the survey line
(x) at nominal depths below mudline (z) of 5 m and 15 m. The PCPT locations are indicated on the plots. It can be
seen on the figure that the qnet-bm and gnetbp10-bpoo profiles essentially represent near-smooth continuous functions
of x. For each sampled data scenario the known gnet-r values at the respective PCPT locations effectively constrain
the range of estimated Qunet.be., With the small amount of variability in quetbe at the PCPTs stemming from PCPT
measurement uncertainty. Conversely, with increasing horizontal distance from the nearest PCPT location the
gnet-bpl0-bpoo range widens, reflecting increasing variability in qnetbe. Figure 6 also highlights at each of the selected
depths the interaction between the relative gnet-r data values, and how differences between spatially adjacent gnetr
points influences the shape and form (trend) of the qnet-bm and quet-bp1o-bpoo profiles.

A further demonstration of the Run 1, Run 2 and Run 3 BCS analysis results structure is presented on Figure 7
as profiles of the COV of the estimated net cone resistance (qnet-bcov) Versus horizontal location (x) at z =5 m and
15 m. The PCPT locations are again highlighted on the figure. The results show that for a given sampled data
scenario (i.e. Run 1, Run 2 or Run 3) and value of x the variation of gnet-becov With z is generally small. Also note
the small qnet-beov values (in the range of 0.02 —0.06) at the PCPTs which represent PCPT measurement uncertainty.
In addition, the figure captures the outcome of two competing and opposing variability effects, namely an increase
in the number of PCPTs leading to an increase in the COV of Ln [qnet-f / qnet-am] (reflecting the increasing mismatch
between the soil layer boundaries across the site; see Section 2.4) and a decrease in the number of PCPTs
(i.e. reduced amount of input gnet-r) leading to an overall increased level of uncertainty in gnet-be. In broad terms it
can be seen that as the number of PCPTs decreases the maximum Quet-beov Occurring midway between PCPT
locations tends to increase.
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Figure 5. BCS analysis results — heat maps of mean and COV of estimated net cone resistance.

An assessment of the performance of the BCS method in predicting gnet at unsampled locations may be
obtained by interrogating the Run 2 and Run 3 BCS analysis results at the excluded PCPT locations. Figure 8a
shows the gnet-r profile for PCPT2 (x = 38 m), together with the mean and P10-P90 estimated profiles from the
Run 2 BCS analyses at x = 38 m. In this scenario where the PCPT2 qcr and uz-r were excluded from the BCS
analysis input, we can quantify the performance of the BCS method in predicting the measured gnet.t. The mean
estimated (gnet-bm) profile shows reasonable agreement with gnet.r over the upper 8.5 m and beyond 14.0 m depth,
while between 8.5 m 14.0 m depth there is some mismatch. Comparing the qnet-bm and gnet-£ profiles over the upper
8.0 m of relatively uniform soil, the Run 2 average normalised prediction error for PCPT2 (expressed as the
average value of abs[(qnetbm — qnet-f) / gnetf] over the specified depth interval) was 19.9 %; across the full depth
interval considered in the analysis (mudline to z =20 m) the gnet.f prediction error increased only slightly to 22.5 %.
The prediction error values are listed on Figure 8a.

Similar sets of results are presented on Figure 8b for Run 2-PCPT4, Figure 8c for Run 3-PCPT1, Figure 8d
for Run 3-PCPT3 and Figure 8¢ for Run 3-PCPT5. The BCS method was reasonably consistent at predicting
Qnerf OVer the upper 8 m (uniform soil), with an average normalised prediction error ranging between
18.2 % —19.9 % for Run 2 and 18.0 % — 22.5 % for Run 3. Considering the full 20 m depth interval the prediction
error for Run 2 (three PCPTs) increased slightly to 22.5 % — 23.3 %, while for Run 3 (two PCPTs) the prediction
error increased significantly to 36.1 % — 57.7 %. In several cases the BCS analysis prediction of the transition from
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versus horizontal distance.

3.4 BCS analysis results — excess pore pressure ratio

The analyses discussed in Section 3.3 concerned the estimation of soil strength as represented by the net cone
resistance. The BCS method is equally applicable to other useful geotechnical properties inferred from PCPT data,
one of these being the excess pore pressure ratio (Bq) which reflects the drainage characteristics of the soil and is
often used to categorise the soil into broad types (e.g. ‘sand’, ‘silt’, ‘carbonate mud/clay’, etc.).

As a demonstration of the estimation of Bg, Figure 10a shows a z-x heat map of the Run 1 mean estimated
excess pore pressure ratio (Bgbm) determined from the 500 sets of estimated excess pore pressure ratio (Bg-be,
calculated as Bgbe = [U2-be — Yw Z] / Qnet-be). Similar z-x heat maps showing Bq.om are presented on Figure 10b for
Run 2 and on Figure 10c for Run 3. The maps included on Figure 10 are presented using consistent axes and scales
— the z-x axes are also consistent with those employed on Figure 5 (showing gnet-bm) to allow direct comparison.
The Bqbm maps provide a useful high-level (and highly visual) representation of the estimated soil type across the
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Figure 8. BCS analysis results — comparison of measured, mean estimated & P10-P90 estimated net cone resistance versus
depth at PCPT locations.

Survey line considering the different sampled data scenarios, with Bqbom < = 0.05 broadly indicating sand,
Bgbm > = 0.6 broadly indicating silt/carbonate mud/clay, and the intermediate Bq.bm interval indicating the
transition between sand and silt/mud/clay.

4 Conclusions

The study described in this paper provides a comprehensive demonstration of the application of an advanced data-
led statistical approach to the interpolation and extrapolation of sparse 2D PCPT data obtained at an offshore
location. Although the relatively small size of the dataset selected for the study limits the generalisability of the
study findings, the complex (layered) and variable nature of the soil stratigraphy at the location makes the dataset
ideal for providing the opportunity to properly assess the statistical method under ‘real-world’ conditions typically
faced by foundation designers.

The study focused primarily on the estimation of net cone
resistance and excess pore pressure ratio at unsampled (untested)
locations across the 2D survey line of interest. An estimate of
measurement uncertainty associated with the PCPT data was
incorporated into the statistical analysis. In addition to assessing
the full dataset, the study considered scenarios where the number
of available PCPTs (and hence the volume of sampled data input
to the BCS analysis) was reduced. Findings from the analysis
highlighted changes in the inferred soil unit structure across the
survey line that result from a reduction in the number of PCPTs
(sampled data volume), and illustrated the corresponding overall
reduction in the fidelity of the estimated net cone resistance.

Analysis results from the study captured the impact of
opposing variability effects, namely an increase in the number of
PCPTs leading to an increase in variability resulting from the
increasing mismatch between soil layer boundaries across the

100

80

Qner.r Non-Exceed. Percentile (%)

60
Qnet.bp Percentile (%)

100

site, and a decrease in the number of PCPTs leading to an
increased level of uncertainty in the estimated soil properties. The
results also showed that coupling of the estimated net cone
resistance and excess pore pressure ratio provides a useful, high-
level and highly visual representation of estimated soil type.

By excluding specific PCPTs from the BCS analysis input,
the study also allowed for a direct statistical comparison of the

—85— Run 2, PCPT2
—&— Run 3, PCPT1
—— Run 3, PCPT5

—=—— Run 2, PCPT4
Run 3, PCPT3
= = = = Unity line

Figure 9. BCS analysis results — comparison of
measured and estimated net cone resistance
percentiles.
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estimated net cone resistance obtained using the BCS
approach with the actual measured (PCPT) values. This
comparison highlighted the considerable challenge faced
by statistical methods (and indeed foundation designers)
— particularly in complex/variable soil stratigraphies — in
predicting ‘unknown’ PCPT data at untested locations.

A key message of the study is that the predictive
performance of advanced statistical approaches like the
BCS method will still suffer from the relative sparseness
typical of geotechnical datasets, particularly in real-world
situations where the available data are invariably
complex. Two important primary goals of future work on
this topic will be to investigate other existing advanced
statistical approaches and/or develop a new approach, and
to incorporate 2D geophysical data into the statistical
framework — such data is usually more ‘plentiful’ than
PCPT data and can provide invaluable information on soil
unit boundary alignments and potentially soil
classification properties. Future work will also focus on
acquiring larger datasets to permit a more thorough
assessment of the performance of statistical approaches in
predicting ‘known-but-unseen’ data, and on extending the
approaches to a three-dimensional spatial framework.
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