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Abstract: Recently, a multiple Kriging metamodel method has been proposed to simultaneously evaluate slope reliability
and assess risk of slope failure within the framework of limit equilibrium method. However, the inherent spatial variability
(ISV) of soil properties was not considered because of the “curse of dimensionality”. This study develops an improved
multiple Kriging (IMK) method for efficient slope reliability analysis and risk assessment considering ISV of properties by a
four-stage dimension reduction method. The proposed method proceeds with the simulation of random fields of soil
properties with a small number of independent variables by using Karhunen-Loéve expansion method. Then, representative
slip surfaces (RSSs) of a slope are identified to reduce the number of Kriging models to be built, which is followed by using
sliced inverse regression (SIR) to further reduce the number of variables. Thereafter, a Kriging metamodel is established for
each RSS with the reduced random variables, while using a new sequential sampling strategy to actively learn and update the
MK models to further improve the efficiency. A slope example is studied to illustrate the accuracy and efficiency of the IMK
method for slope reliability analysis and risk assessment. The influence of the size of the training samples on the accuracy of
the proposed model is discussed. The results show that the proposed IMK method performs accurately and effectively on
slope reliability analysis and risk assessment considering ISV of soil properties.

Keywords: Slope reliability analysis; risk assessment; spatial variability; Kriging; active learning; representative slip surface;
sliced inverse regression; Karhunen-Lo¢ve expansion.

1 Introduction

It is advantageous to use Kriging metamodel for slope reliability analysis (Zhang et al., 2011; Liu and Cheng,
2018) because it can be performed efficiently. The traditional single Kriging model is, however, unable to
accurately assess the risk of slope failure. To this end, a novel method of multiple Kriging (MK) metamodels,
which is constructed by establishing a unique Kriging metamodel for each potential slip surface (PSS) of a slope
stability analysis model, has been recently proposed by the authors to solve this problem (Huang et al., 2021).

Although effective, the MK method cannot be directly applied to probabilistic slope stability analysis with
considering the inherent spatial variability (ISV) of soil properties for the following three reasons. First, the
construction of the Kriging metamodel may suffer from the curse of dimensionality because of the discretized
large number of correlated random variables for representing ISV. Second, too much computational time is spent
on building Kriging models for numerous trivial slip surfaces with high correlations, which is a kind of waste.
Third, the design of experiments for calibrating MK metamodels is based on trials and errors, which is low in
both efficiency and accuracy.

In view of the above three issues, a four-stage dimension reduction method is developed for slope reliability
analysis and risk assessment considering ISV within the framework of the limit equilibrium method, which is
abbreviated as IMK hereafter. The IMK method is a further improvement of the MK method, which is realized
by integrating the Karhunen-Loéve expansion (KLE), sliced inverse regression (SIR), representative slip surface
(RSS) identification and active learning with the MK method. To explicate the proposed IMK method, this paper
is organized as follows. Section 2 provides the introduction of the proposed IMK method. The proposed method
is then illustrated and validated by a three-layered cohesive soil slope in Section 3, and finally comes the main
conclusions of the study.

2 The IMK method
Conventionally, the employment of the Kriging metamodel to approximate the LEM slope stability model has

two purposes: (1) improving the computational efficiency; (2) improving the accuracy of the metamodel. For the
first purpose, the efficiency can be improved from two aspects. One is to reduce the dimension of input variables.
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When the dimension of the input variables is large, the number of training samples required to construct the IMK
metamodels is large accordingly, of which the computational cost sometimes even exceeds that for the direct
MCS. Therefore, the proposed IMK method adopts the KLE to achieve the first dimensionality reduction and
then performs the second dimension reduction based on SIR (Li et al., 2019). Another is to reduce the number of
IMK metamodels. When the number of PSSs is numerous, the computational resources spent on building the
metamodels are also abundant. Thus, this paper adopts the method proposed by Jiang et al. (2015) to identify
RSSs, and then the IMK method only establishes the Kriging metamodels for the RSSs. For the second purpose,
the IMK method proposes a new active learning method to sequentially update the Kriging metamodels by a
significant domain and a new learning function H, and then the accuracy of the Kriging metamodels can be
improved quickly and accurately.

To sum up, the overall process of applying the IMK method to probabilistic slope stability analysis consists
of four stages: (1) discrete the random field by KLE to simulate the ISV; (2) identify the RSSs; (3) reduce the
dimension of the input variables through SIR; and (4) establish the initial IMK metamodels for the RSSs based
on the input variables after dimensionality reductions and further update the prediction results through active
learning for the initial kriging metamodels. Each of the four stages is described in the following subsections.

2.1 Karhunen-Loéve expansion
Due to weathering and sedimentation, soil parameters (e.g., cohesion € and friction angle ¢ ) in nature present

ISV. The ISV can be simulated by a random field, and the construction of a random field requires the known
point statistics and correlation structures of soil parameters. The correlation structures are usually represented by
an autocorrelation function (ACF), which can be spectrally decomposed by KLE. For a stationary lognormal

random field H(x), it can be expressed as:

H(x) =explay + 20y %m ()5 (1)

where X is the space coordinate; 4, and o, are the mean and standard deviation of soil parameters,

respectively; &=[&,&,,...,& ] is a set of standard independent random variables, and m is the number of
truncation terms depending on the precision required for the discretization of the random field (Phoon et al.,
2002); 4 and @,(x) are the eigenvalues and eigenfunctions of the ACF, respectively, which can be obtained by

solving the homogeneous Fredholm integral equation of the second kind. Noted that the squared exponential
ACF is adopted in this paper.

2.2 Representative slip surface identification

In this subsection, A simple but effective method proposed by Jiang et al. (2015) is employed to identify the
RSSs in this study. According to Jiang et al. (2015), since the realizations of random fields are different, the
failure modes of the slope system may also be different, suggesting that the critical slip surface (CSS) may be
different from realization to realization of the random fields. However, the distribution of all possible failure
modes may not be as large as that of all PSSs because of the ISV. Therefore, the RSSs can be selected easily by
performing the deterministic slope stability analysis (e.g., the Bishop's simplified method ) for a number of Ns
realizations of random fields to obtain Nrss CSSs. It is worth noting that Nrss<Ns because the failure modes of
the slope system are generally correlated.

2.3 Sliced inverse regression

After the above two stages, the random field is represented by m-dimension standard independent random
variables & and Nrss RSSs are identified. However, directly establishing a Kriging metamodel for the input
variables after KLE may still suffer from the curse of dimensionality and the modeling time may be large.
Therefore, SIR is used to further reduce the dimension of the input variables.

SIR is a commonly used dimensionality reduction method of a nonparametric model. It maps input
variables from high-dimensional space to low-dimensional space through a sufficient dimension reduction
subspace. Different from PCA (Principal Component Analysis) that only uses the input variable information to
reduce the dimension, SIR fully considers the relationship between multiple input variables £ and a single output
variable (e.g., FS). It can be seen as an improvement of PCA in the context of regression, exploring the
regression of input variables to output variables.

Therefore, for Rs sets of standardized samples [£,S,,...,&; 1", the implementation steps of SIR are as
follows: (1) sort the samples according to the corresponding output variables; (2) divide the samples into s slices

as evenly as possible; (3) compute the sample mean of each slice; (4) perform the weighted PCA on the sample
mean to obtain the eigenvalues and eigenvectors of the weighted covariance matrix; (5) identify the first d largest
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eigenvalues, and the corresponding normalized eigenvectors are the dimensionality reduction direction. More
details about SIR can be seen in Li et al. (2019).

2.4 Active learning Kriging method
Based on the training samples [77,,7,,..., 7, ]" after SIR dimensionality reduction, an initial IMK metamodel is
first established for each RSS. At this time, the accuracy of the initial IMK metamodels may not be high due to
dimensionality reduction. Therefore, a new sequential sampling strategy (Huang et al., 2022) is adopted to
actively learn and update the initial IMK metamodels.

This new sampling strategy mainly consists of two parts: identification of significant domain and
determination of additional training samples (ATSs). For the slope series system with multiple failure modes, the
significant domain is the safe domain. However, the safe domain cannot be known in advance unless performing

the slope stability analysis. Thus, the prediction é(n) using the Kriging metamodel is adopted as the substitute
for the true-response value g(#77) to estimate the significant domain.

Before the identification of the significant domain, a large number of MCS samples are randomly generated
as the initial sample pool Qixi, also known as the initial samples, which are substituted into the initial Kriging

metamodels to obtain the corresponding Kriging predictions é(n). Based on the Kriging predictions, the
significant domain can be defined as:

0= 4 ()
o (1)

where 7 is an input random variable vector after SIR dimensionality reduction, 5 =[7,,7,,...,7,]; Nass is the

Ssys = {ﬂ € Qini
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number of the failure modes, also known as the number of RSSs herein; g (7) = FS, —1 is the true-response
value of the limit state function (LSF) of the ith RSS; FS, is the factor of safety (FS) of the ith RSS.; ,ué (n) is

the mean of the predicted value é; (m) by using the ith current Kriging metamodel; aé (17) is the corresponding

. Y
variance of 4.’ () 1—<I>(O_i—(gﬂ)

4
as 80%. As such, the samples, which are located in Sy, compose a candidate sample pool Qca from which the
ATSs will be selected. Then, a new learning function H is used to determine the ATS and the new selection
strategy based on the H function is as follows:

) represents the probability that éi(n) is positive; and ®(9) is determined

— 1L ()

H =|®(———)-50%
g, (m) ®)
0 422 (1) A

where (D(ﬁ) is the probability that g, (77) is negative, and the ATS can be determined as:

(k.p)=arg  min ~(H () w

where 7" is the ATS; and &~ is the index of the Kriging metamodel to be updated. The stop criterion of the H
function is set as H e (7]*) > 0.4986. It is worth noting that the active learning is completed through iterations,

and only one ATS is selected in each iteration.

3 Illustrative example

The proposed method is applied to the reliability analysis and risk assessment of a three-layered cohesive slope
studied by Li et al. (2016) in this section. The cross-section of the three-layered cohesive slope is shown in
Figure 1(a). The slope is 14.3 m high, and the slope ratio is 1:3. The strength parameters of the three undrained
layers are considered spatially variable here and shown in Table 1, and the soil unit weight of the three layers is a
constant of 18 kN/m?®. With the mean values of these parameters, a deterministic slope stability analysis of the
slope is first carried out by Bishop's simplified method. A total of 14,896 reasonable arc-shaped PSSs are
predefined in the model, as shown by the solid gray lines in Figure 1(a). Based on the mean values of su1, si2an d
su3, the minimum FS is calculated as 1.281 and the critical deterministic slip surface is shown by the red dashed
line in Figure 1(a), which are basically consistent with the calculation results of Li et al. (2016).

211

2



212 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

w
3

—— 14,896 potential slip surfaces
== == Deterministic critical slip surface

— 1358 representative slip surfaces
<= == Deterministic critical slip surface

0
=

Elevation (m)
Elevation (m)
’

45 45 oS ==
0.0 - 0.0 2
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Distance (m) Distance (m)
(a) Potential slip surfaces (b) Representative slip surfaces

Figure 1. The geometry of the slope with 14,896 potential slip surfaces and 158 representative slip surfaces.

Table 1. The strength parameters of the three undrained layers.

Mean . Autocorrelation
Layer Parameter (kPa) COoV Distribution distance (m)
Clay 1 S, 18 0.3 Lognormal 0, =20m,
Clay 2 Sua 20 0.2 Lognormal
0 =2m
Clay 3 S,3 25 0.3 Lognormal

To simulate ISV, three random fields of s.1, s.2 and s.3 are divided into 495, 939 and 1080 elements,
respectively, corresponding to the three layers from up to down with a side length of 0.5 m, as shown in Figure
2. The horizontal autocorrelation distance 6, and vertical autocorrelation distance ¢, are taken as 20 m and 2.0

m, respectively. For the squared exponential ACF, KLE with 29 truncation terms can well represent the three
random fields (Phoon et al., 2002). Therefore, for this slope, the dimension of the input random variable £ is 29.

Elevation (m)

0 10 20 30 40 50 60
Distance (m)
Figure 2. Typical random field realization for the three-layered cohesive slope.

3.1 Probabilistic slope stability analysis results
First, 1,000 realizations of s,,, s, and s,, are simulated by LHS using Eq. (5), and their corresponding CSSs

are determined using the Bishop's simplified method, resulting in a total of 158 RSSs herein, as shown in Figure
1(b). It can be seen that the deterministic CSS is also included in the RSSs. Thereafter, 320 realizations of
random fields with their corresponding FSs are randomly selected from the above 1000 realizations to perform
the dimensionality reduction by SIR. Here, the reduced dimension d is set as 1, which is consistent with Li et al.
(2019), and the number of slices s is set as 10. The parameter settings for the number of initial training samples
are discussed in Section 3.2. It is worth noting that the sufficient dimension reduction subspace obtained by SIR
is different for each RSS because FSs obtained by 320 random field realizations are different, thereby needing to
perform 158 SIR dimensionality reductions in this example.

Based on the sufficient dimension reduction subspace, 29-dimension input variables are mapped to the 1-
dimension input variable, and 158 initial IMK metamodels are established for RSSs. Meanwhile, 10,000 MCS
random field samples are randomly generated as the initial sample pool. The initial samples are substituted into
the initial IMK metamodels to obtain the Kriging predictions. Then, the active learning described in subsection
3.4 is performed to improve the accuracy of the IMK metamodels. Finally, the active learning stops after 72
iterations, and the high-precision IMK metamodels have been constructed.

To verify the accuracy of the proposed method, another 1,000 test random field samples are generated by
LHS and substituted into the established high-precision IMK metamodel. Figure 3(a) compares the minimum
FSs predicted by the IMK metamodels with those calculated by Bishop's simplified method. It can be seen that
the two methods have high consistency, suggesting that the proposed method still maintains high accuracy after
reducing the number of slip surfaces and SIR dimensionality reduction.
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Figure 3. Comparison of the minimum FSs obtained by three methods and Bishop's simplified method.

In addition, to further analyze the accuracy of the IMK method, another 10,000 MCS random field samples
are substituted into the high-precision IMK metamodels to obtain the means, standard deviations and associated
probability distribution function (PDF) of the predicted minimum FSs. Meanwhile, THE BISHOP’S
SIMPLIFIED METHOD is also adopted to calculate the minimum FS and obtain its probability distribution
characteristics for comparison. Figures 4(a) and 4(b) show the probability distribution characteristics of the
minimum FS calculated by THE BISHOP’S SIMPLIFIED METHOD and those predicted by the IMK method,
respectively. From the figures, the PDFs fitted by the two methods are log-normal distributions, and the means
(1.323 vs. 1.315) and standard deviations (1.185 vs. 1.181) are also consistent. This consistency demonstrates the
high accuracy of the proposed method again.
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Figure 4. Histograms and fitted PDFs of the minimum FSs.

Based on the high-precision IMK metamodels, MCS with 100,000 random field samples is efficiently
performed to estimate the failure probability Prand failure risk R. Herein, the risk assessment adopts the method
proposed by Huang et al. (2013). The failure probability and failure risk are calculated as 0.0450 and 11.694,
which are consistent with the results (Pr for 0.0487 and R for 12.022) calculated by direct MCS with 10,000
samples. Such agreement thus validates the accuracy of the proposed method.

3.2 Comparison and discussion
To illustrate the computational efficiency of the IMK method, this section further selects the following two
schemes for comparison:

(1) MK-RSS-SIR method: the active learning is not conducted compared with the IMK method;

(2) MK-RSS method: the active learning and SIR dimensionality reduction are not conducted compared
with the IMK method.

Table 2. Results obtained by different methods for the three-layered undrained slope.
Number of training  Absolute calculation

Method Py COVyp, R COVy samples time (h) Source
MCS (10,000)  4.87% 4.40% 12.02 4.57% - 889.0 This study
IMK 4.50% 1.46% 10.98 1.50% 320+72 3.8 This study
MK-RSS-SIR ~ 4.67% 1.43% 11.54 1.48% 435 8.3 This study
MK-RSS 4.65% 1.43% 11.50 1.49% 290 18.5 This study
LHS (1,000) 5.70%  12.86% - — - - Liet al. (2016)

The number and dimensions of training samples are decisive factors in determining the time required to
build the Kriging metamodel. According to the rule of thumb, it is sufficient to calibrate a Kriging metamodel
when the number of training samples is 10-15 times the number of random variables. Therefore, based on the
above three methods, 290 random field samples are initially selected to build the Kriging metamodels. However,
only the results predicted by the MK-RSS method are accurate, as shown in Figure 3(c) and Figure 4(d). The



214 Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR)

IMK method and MK-RSS-SIR method require more training samples. Finally, for the IMK method, when the
number of initial training samples is 320, the predicted results are accurate, as shown in Figure 3(a) and Figure
4(b); while for the MK-RSS-SIR method, accurate results are not obtained until the number of training samples
is 435, as shown in Figure 3(b) and Figure 4(c).

The probabilistic stability analysis results obtained by different methods and the absolute calculation time
on a desktop with 16 GB RAM and one Intel Core i7 CPU clocked at 3.2 GHz required by different methods are
summarized in Table 2. From the table, it can be observed that although the accuracy of the proposed method is
slightly lower than that of the MK-RSS method, its computation time is much smaller than that of the MK-RSS
method. Therefore, considering the computational accuracy and computational efficiency, this loss of accuracy is
acceptable. While compared with the MK-RSS-SIR method, the computational efficiency of the proposed
method is also higher. In general, the three methods can accurately replace the slope stability analysis model for
slope reliability analysis and risk assessment considering ISV. However, the proposed method greatly improves
the computational efficiency under the premise of ensuring accuracy.

4 Conclusion

In this paper, an improved multiple Kriging (IMK) method has been proposed for efficient slope reliability
analysis and risk assessment considering ISV of soil properties. The IMK method firstly combines the KLE and
SIR to reduce the dimension of input variables to improve the computational efficiency. Then, RSSs are selected
to reduce the number of Kriging models to further improve the computational efficiency. Finally, , the
calculation efficiency on the premise of ensuring the calculation accuracy is achieved by actively adding
additional training samples around the system LSF to compensate for the accuracy loss caused by previous
dimension reductions.

A three-layered cohesive slope is adopted to illustrate the effectiveness of the IMK method. The results
show that the proposed method can accurately and effectively substitute the slope stability analysis model for
probabilistic analysis. In addition, the advantages and disadvantages of the proposed method, MK-RSS-SIR
method and MK-RSS method are compared from the perspective of accuracy and efficiency. It is shown that,
although the calculation accuracy of the proposed method is slightly lower than that of the MK-RSS method, its
computational efficiency is the highest. Weighing efficiency and accuracy, the loss of accuracy is acceptable.
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