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Abstract: The infinite model is often used, for an initial assessment of the mechanics and stability of shallow landslides.
Spatial variability is a dominant feature of natural soils, with a trend of increasing strength with depth. In this paper, an
algorithm to generate 1D non-stationary random fields of undrained strength is proposed, and used to analyze the influence of
spatially variable undrained strength on infinite slope reliability, with a linearly increasing mean trend. Both static and
pseudo-seismic loading is considered. A critical slope angle leading to a minimum reliability index is identified, and shown
to be related to the horizontal seismic coefficient.
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1 Introduction

In the realm of slope stability analysis, the infinite slope procedure is relatively simple to use, as it leads to an
analytical solution for the factor of safety (e.g., Duncan et al. 2014). The infinite slope model can assess the
mechanics of shallow landslides, and analyze long slope stability. The traditional criterion that defines the slope
stability is the factor of safety (FS), which is calculated using constant soil properties based on characteristic
values. However, soil properties such as shear strength vary ‘from point to point’ (Terzaghi 1948), suggesting a
statistical approach is needed for characterizing spatial variability of soil properties in the assessment of slope
stability.

Griffiths et al. (2011b) firstly proposed a random field method to perform probabilistic stability analyses of
infinite slopes, in which shear strengths were generated by random field theory. This early random field analyses
considered infinite slopes with stationary random properties, i.e. the mean and standard deviation of shear
strength parameters were constant with depth. However, soil strength may display an increasing trend with depth
(e.g., Phoon and Kulhawy 1999), and this non-stationary character of soil properties has received attention to
predict the reliability of infinite slopes; for example, Li et al. (2014) adopted the Karhunen-Loeve (KL)
expansion to discretize the random fields of soil strengths which increase linearly with depth to study the
reliability of infinite slopes; and Zhu et al. (2019) used the limit equilibrium method combined with 1D non-
stationary random fields discretized by the KL expansion to conduct reliability analysis of infinite clay slopes
under static and pseudo-seismic conditions. This study will extend the work of Griffiths et al. (2011b), focusing
on the reliability analysis of infinite clay slopes with non-stationary random fields of undrained strength by the
random field method.

Consider a typical column of an infinite clay slope with linearly increasing undrained strength as shown in
Figure 1. The factor of safety (e.g., Zhu et al. 2019) can be given by

¢+ pz
(sin B+ k, cos f)yzcos

FS:min{ },0<2£H (D)
where ¢ is the undrained strength at the top of the infinite slope; p is the gradient of strength increasing with
depth z; y is the saturated unit weight; £ is the slope angle; k; is the horizontal seismic coefficient; H is the

depth of the soil above bedrock. For simplicity, only the undrained strength (c,) is modelled as a random
variable, while other parameters are treated as deterministic throughout this study.
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Figure 1. A model for the infinite undrained slope with linearly increasing strength.
2 Static infinite slope analysis

2.1 Deterministic stability analysis of infinite undrained slopes with linearly increasing strength
For the static case (k, =0), the Eq. (1) can be simplified to

FS=mind—wPZ l_nl G, P 0<z<H )
yzsin fcos S yzsin fcos f ysin fcos S

It can be seen from Eq. (2) that, as the variables (¢ q, o, 7, B) are constant, the minimum value of the

factor of safety (corresponding to the smallest value of the factor of safety for all slices) will occur at the base of
the infinite slope (z = H ). Therefore, for an infinite undrained slope with linearly increasing strength, the
critical failure plane will be at the full depth of the slope, with the factor of safety given by

cot+pPH

= 3)
yH sin fcos

By observing Eq. (3), the critical slope angle ( A3, ) which leads to the minimum factor of safety will be at
45°, as noted by Griffiths et al. (2011a).

2.2 Probabilistic analysis of infinite undrained slopes with linearly increasing mean strength
For the problem definition shown in Figure 1, the mean undrained strength can be given by

Mo, =M, Pz @)

where g, is the mean undrained strength at depth z and , is the mean undrained strength at the top of the
uz ul

infinite slope. In this study the non-stationary random field with the properties by Eq. (4) will be simulated using
the following steps (e.g., Zhu et al. 2017):

Step 1: Adopt the local averaging subdivision method to generate an initial 1D stationary lognormally
distributed random field according to the parameters at the top of the infinite slope, i.e. the mean ( Mo, ), standard

deviation (o, ) and spatial correlation length (&). These initial values (¢;, i =1, 2,--+, 100) are assigned to

all slices (the column is split into 100 equal slices), over depth, of the infinite slope. The selection of 100 slices is
a reasonable compromise (Griffiths et al. 2011Db).
Step 2: Slice values are then adjusted to take account into other depths ( z > 0) by using the scaling factor

. t+pz
C:CWM (%)

U,

Cuo

where ¢, is the undrained strength for the i"

slice and z is sampled at the centroid of each slice.
After the generation of the non-stationary random field and assignment to each slice, the factor of safety for

the i™ slice at depth z is given as
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FS, —=— G (6)

“ " yzsin Bcos B

The column of an infinite clay slope consists of 100 slices, each slice would return a different factor of
safety, and the smallest one is the “correct” value. In the previous section, the deterministic FS always occurred
at the base of the infinite slope (z = H ), however, this is not necessarily the case in a random soil, where the
minimum ¢, / z may occur elsewhere (Griffiths et al. 2011b).

In a Monte-Carlo framework, each repetition by the random field method involves a generation of a non-
stationary random field and a subsequent calculation giving the lowest factor of safety and the critical failure
plane. In the current work, 5000 Monte-Carlo simulations were performed from which the probability of failure

( p; ) was computed as the proportion of the 5000 simulations where FS<1.

To investigate the effect of non-stationary property of undrained strength on the reliability of the infinite
slope, for the static case, an example slope with u,, =25 kPa, H=2.5 m, y =20 kN/m® and S =30° is
firstly considered with four different values of the gradient of mean strength (p =0, 0.2, 0.4, 0.6 kN/m?). It
may be noted that the case of p=0 and v, =0.1 involves a stationary random field, that was also the test slope
considered by Griffiths et al. (2011Db).

Figure 2 shows the probability of slope failure plotted against the nondimensional spatial correlation length
(®=0/H) for different gradients of mean strength with v. =0.1. It can be seen that the probability of slope

failure p, decreases as © is increased and eventually flatten out for all values of p . This indicates that the
“single random variable” (SRV) approach (implying infinite spatial correlation length ® — oo ) always
underestimates p, for infinite undrained slopes with linearly increasing mean strength. This is the same
conclusion reached by Griffiths et al. (2011b) for a stationary soil ( o =0). For details of the infinite slope
problem by the SRV approach, the reader can refer to Griffiths et al. (2011b). Also indicated in Figure 2, for a
fixed value of ®, is that p, decreases with increasing o . The reason is that when other parameters are fixed, a
larger value of p will lead to higher values of mean undrained strength across the soil layer, indicating
increasing values of FS at all depths which decreases the probability of slope failure.
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Figure 2. Probability of failure versus the nondimensional spatial correlation length for different gradients of mean strength

for an infinite slope with 4 =2.5 m, y =20 kN/m’, #=30°, u = 25 kPaand v, =0.1.

2.3 Observations on the frequency of the critical depth
As stated in the previous section, the critical depth may not necessarily be at the full depth of the random soil in

an infinite slope with linearly increasing mean strength, because the lowest factor of safety occurs when ¢, / z is
at minimum. Figure 3 shows histograms of the frequency of the critical depth for the example slope for different
values of p when ®=0.04 and v, =0.1, which clearly indicates that the critical depth is most likely to be

near the base of the infinite slope for all cases. It can also be noted that the frequency of the depth of critical
mechanisms appears to be essentially unaffected by the value of p . This is due to the fact that, in the generation

of the 1D non-stationary random fields, while all depths will be assigned greater values of ¢, on average for

larger values of p , the critical depth just depends on the minimum of all values of ¢, /z. It should be noted that,

this phenomenon may only be suitable for undrained slopes. The critical depth may occur at other depths if a
cohesive-frictional slope is considered.
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Figure 4 shows histograms of the frequency of the critical depth for the example slope with different values
of v, when ®=0.04 and p=0.2 kN/m3. It can be observed from Figure 4 that the critical depth is still most

likely to be at the base, however, the frequency of the critical depth occurring at the base decreases as the value
of v, increases. Only about 10% of simulations occurred at the base when v. =0.3, while over twice that the

number occurred at the base for v, =0.1. This observation might be expected, because the increase of v, leads

to greater fluctuations of ¢, about the mean at all elevations, and hence a greater probability of minimum values

of ¢, / z occurring at elevations above the base.
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Figure 3. Histograms of frequency of the critical depth by th; random field method for different values of p for an infinite
slope with H =2.5 m, y =20 kN/m?, =30°, M., =25 kPa, v, =0.1 and ©=0.04.
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Figure 4. Histograms of frequency of the critical depth by the random field method with different values of v, for an

infinite slope with H =2.5 m, y =20 kN/m?, f=30°, ,=25kPa, p=0.2 kN/m? and © =0.04.

3 Pseudo-seismic infinite slope analysis
3.1 Deterministic pseudo-seismic stability analysis of an infinite undrained slope with linearly increasing

strength
For pseudo-seismic case, the Eq. (1) can be further transformed into

FS = min{——— —— P —{,0<z<H
yz(sin fcos B+k, cos” ) y(sinfScos f+k, cos” ff)

As with the static case, when the parameters (c,,, p, 7, f, k) are held constant, the lowest value of
FS will also occur at the base. Thus, for the infinite undrained slope with linearly increasing strength under

(7

pseudo-seismic loading, the factor of safety is given by
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FS = cot+tpPH
yH(sin B cos B +k, cos’ 3)

®)

In the previous section, Eq. (3) results in a critical slope angle ( £, ) which is 45° for the static case. For

the pseudo-seismic case, the critical slope angle can be obtained analytically by finding the maximum value of
the function

f(ﬂ, kh):sinﬁ’cos,b’+kh cos” 3 ©)

By differentiation of Eq. (9) and setting the result to zero, the critical slope angle will be

B = % arctan ki (10)

h

To investigate the critical slope angle phenomenon, for the pseudo-seismic case, an example infinite slope is
used here with the properties H =2.5 m, y =20 kN/m’, ¢, =25 kPa and p =0.2 kN/m’. Figure 5 shows

analytical solutions from Eq. (8) for the example slope with different horizontal seismic coefficients over a range
of slope angles. It can be seen clearly from Figure 5 that as k, increases, the critical slope angle f3 . decreases.

Also indicated in Figure 5, is that FS decreases with increasing &, , especially for lower values of slope angle.
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Figure 5. Analytical solutions from Eq. (8) with different horizontal seismic coefficients over a range of slope angles for an
infinite slope with # =2.5 m, y =20 kN/m?, ¢,, =25 kPaand p =02 kN/m’.

3.2 Probabilistic pseudo-seismic analysis of infinite undrained slopes with linearly increasing mean
strength

Figure 6 shows the probability of failure plotted against the nondimensional spatial correlation length with
different horizontal seismic coefficients for the example slope with H = 2.5 m, y = 20 kN/m?, 8 =30°,

U, =25kPa, p=0.2 kN/m’ and v_ =0.1. It can be seen from Figure 6 that, for a fixed value of ©, the

u

probability of failure increases rapidly when k, increases from 0 to 0.15, indicating that pseudo-seismic loading

has a significant influence on the reliability of infinite undrained slopes with linearly increasing mean strength in
a random field case.
Figure 7 shows the probability of failure plotted against slope angle for the example slope with H =2.5 m,

7 =20 kKN/m’, g = 25 kPa, p=0.2 kN/m’, v, =0.1, ®=4, k, =0.0 and 0.1. It can be seen that, for static
case shown in Figure 7a, the probability of failure reaches a maximum when £ =45.0°. For pseudo-static case
shown in Figure 7b, when £ =42.1°, which is about the value given by Eq. (10) for k, = 0.1, the highest p; is

observed. This phenomenon can also be predicted by deterministic analysis where the factor of safety reaches a
minimum for the £, = 0.0 and 0.1 cases shown in Figure 5.
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Figure 6. Probability of failure versus the nondimensional spatial correlation length for different horizontal seismic
coefficients for an infinite slope with // =2.5 m, y =20 kN/m’, #=30°, u_ =25 kPa, p=0.2 kN/m’and v, =0.1.
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Figure 7. Probability of failure versus slope angle for an infinite slope with H =2.5 m, y =20 kN/m’, S = 25 kPa,
p=02 kN/m’, v. =0.1 and ®=4.(a) k, =0.0, (b) k, =0.1.

4 Concluding remarks

This study investigates the reliability of infinite slopes with linearly increasing mean undrained strength under
both static and pseudo-seismic loadings. The probability of infinite slope failure decreases with increasing
gradient of mean strength. As the coefficient of variation of strength is increased, the frequency with which the
critical depth occurs at the base is decreased. For static case, the critical slope angle is 45°, and it decreases from
45° as the horizontal seismic coefficient is increased.
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