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Abstract: The representation of the spatial variability of soil properties in the form of random fields permits advanced and
realistic probabilistic assessment of slope stability. As the intensity and the spatial distribution of soil properties vary in
different random field realizations, the resulting failure mechanisms will also be different. Not only does the location of the
failure surface vary, but the failure mode itself could also change. While the random field finite element method (RF-FEM),
which adopts the shear strength reduction technique to naturally seek out the failure mechanism, is advantageous over other
numerical schemes that need the failure mode to be defined a-priori, it suffers from a lack of computational efficiency. In this
paper, the application of the image segmentation technique for predicting slope failure mechanism in spatially variable soils
is investigated. The deep learning model based on the Resnet-18 architecture is applied to study the failure mechanism of a
soil slope modified from a real case study. With sufficient training samples, the deep learning model can function as an image
segmentation tool to delineate the sliding mass and the intact mass in the slope, based on which the mode and the location of
the slip surface can be predicted without the need to perform the time-demanding random field finite element analysis. By
using such an image segmentation tool, a large number of Monte-Carlo realizations of random fields can be efficiently
analyzed. The spatial distribution of failure surfaces and the statistical distribution of sliding volume can then be calculated,
leading to an improved understanding of slope reliability.
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1 Introduction

The inherent spatial variability of the physical and mechanical properties of natural soils has been considered as
one of the major sources of uncertainties in the geotechnical engineering community (Phoon and Kulhawy 1990;
Griffiths et al. 2009; Jiang et al. 2022). In the majority of the slope reliability analyses in spatially variable soils,
the safety of the slope is typically characterized by the term “probability of failure (Pr)”. Other than the
probability of failure, the failure mechanism of the slope also serves as an important source of information for
the analysis, design and management of the system. For example, piles are often used to stabilized slopes (Gong
et al. 2019). The selection of pile length and location are critically dependent on the failure mechanism of the
slope.

Traditional probabilistic slope analysis may not have rigorously investigated the failure mechanism. Studies,
such as Cho (2010), and Li et al., (2015), adopted the Limit Equilibrium Method (LEM) and define the failure
mode a-priori. In this regard, the random field finite element method (RF-FEM), which adopts the shear strength
reduction technique to naturally seek out the critical failure mechanism, is a more rigorous technique. However,
many studies typically showed only one or a few selected failure surfaces (Griffiths et al. 2009; Liu et al. 2018),
which may not be sufficient for providing a comprehensive understanding of the failure mechanism of the slope.

As the intensity and the spatial distribution of soil properties vary in different random field realizations, not
only does the location of the failure surface vary, but the failure mode itself could also change. Van den Eijnden
and Hicks (2017), for example, coupled the RF-FEM with subset simulation to investigate the spatial distribution
of slope failure surfaces, and showed that the location of the failure surfaces can vary significantly. Furthermore,
Chen et al. (2022) investigated both the location and shape of the failure surface using the Monte-Carlo
simulation approach. They reported that the failure mode can vary from a shallow failure to a deep-seated failure
in different random field realizations. In some cases, progressive failure that involves multiple failure surfaces
may also occur.

In order to derive a more complete picture of the failure mechanism of a slope, many random field
realizations are needed, which may lead to excessive computational costs. To this end, this paper proposes to use
the concept of image segmentation to provide an efficient computational tool to facilitate a comprehensive
investigation of slope failure mechanisms in spatially variable soils. Essentially, the failure mechanism of a slope
involves a sliding body and an intact body. The surface that delineates the two bodies is treated as the failure
surface. In this regard, an image segmentation model can be trained to provide a viable tool to automatically
differentiate the sliding mass from the intact mass. With such an image segmentation tool, many Monte-Carlo
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realizations of random fields can be efficiently analyzed. The spatial distribution of failure surfaces, failure mode
and sliding volume can then be calculated, leading to an improved understanding of the slope reliability.

2 Methodology and Implementation

2.1 Interpreting random fields

In the field of computer science, Convolutional Neural Networks (CNNs) specialize in interpreting data that has
a grid-like topology, such as an image. CNNs, through the use of convolutional filters, can extract features of the
image taking into account pixel positions and the influence of nearby pixels. A random field, in essence, has a
grid-like topology, and can be regarded as an “image” that describes the intensity and the spatial distribution of
soil properties. In this regard, it is reasonable to hypothesize that CNNs are capable of interpreting and
processing random fields in a similar manner as they are used for images. In fact, interpreting random fields
using CNNs have been recently demonstrated to be effective in some studies (Wang and Goh 2021; Wang and
Goh 202; Zhang et al., 2021a; Zhang et al., 2021b). Therefore, the feasibility to couple random fields with CNNs
lays the foundation of using the image segmentation approach to study slope failure mechanism.

2.2 Image segmentation

Image segmentation involves partitioning an image into several regions or segments based on the characteristics
of the pixels in the image. This technique has a wide range of engineering applications, including, but not limited
to, medical image analysis, autonomous vehicles, and landslide susceptibility. Figure 1 shows an example of
image segmentation task. Based on the characteristics of the pixels, this image is partitioned into several objects.
In the literature, numerous algorithms have been developed to perform the task, such as thresholding, k-means
clustering, and sparsity-based methods. In the last decade, deep learning-based image segmentation algorithms,
which have provided improved performance, have received much research. In this paper, the Deeplab v3+ (Chen
et al. 2018), which is based on a convolutional network, is used to perform the image segmentation task.

Figure 1. An example of image segmentation. (www.mathswork.com)

2.3 Implementation procedures

Figure 2 illustrates the procedures for implementing the image segmentation model to study the slope failure
mechanism in spatially variable soils. The implementation consists of three parts: (i) data pre-processing, (ii)
training of the image segmentation model, and (iii) slope failure mechanism investigation.

2.3.1 Data pre-processing

After generating a random field (e.g. Figure 2 (a)), the shear strength reduction technique can naturally seek out
the failure mechanism (e.g. Figure 2(b)). The slope body exhibiting large displacement values is considered as
the sliding mass while the remaining slope body is the intact mass. However, it is not trivial to objectively define
“large displacement” and draw the failure surface. To this end, the k-means clustering technique is used to
automatically and objectively separate the displacement field into the two bodies (Van den Eijnden and Hicks,
2017), and a clear failure surface can be identified (e.g., Figure 2 (c)). In a nutshell, the image shown in Figure 2
(a) is the image to be segmented while the image shown in Figure 2 (c) shows the results of the segmentation.
The procedures are then repeated for X different input random fields, and this concludes the data pre-processing
part.

2.3.2  Training of the deep-learning model

The X pairs of input random fields and the segmentation results (e.g. Figure 2 (c)) are then adopted as the
training data of the image segmentation model. The Deeplab v3+ and the weights initialized from the pre-trained
Resnet-18 network are used in the present study. Due to the complexity of the model, the architecture is not
shown. Details pertaining to the architecture of the model can be found in Chen et al. (2018). Other details
pertaining to the hyperparameter values, and the training process will be elaborated in the subsequent parts of
this paper.
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2.3.3  Slope failure mechanism

After sufficient training, the image segmentation model gains the capability to partition the slope into the sliding
body and the intact body without running the RFEM model. In this regard, a large set of random field samples
can then be generated, and the segmentation results can be efficiently predicted using the trained model without
having to perform the finite element analyses. After obtaining the failure surfaces associated with a sufficiently
large set of random fields, the spatial distribution of the failure surfaces and the failure modes can be
investigated.
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Figure 2. Implementation procedures.

As shown in Figure 2 (e), the failure surfaces obtained from many random field realizations can be co-
plotted in a figure. The mode, size, and location of the failure surfaces can be visualized, and the extent of the
area covered by the failure surfaces can also be investigated. In addition, the sliding volume, which is key
information in landslide mitigation, can also be efficiently calculated, e.g. Figure 2 ().
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Figure 3. Geometry and geological profile of Congress Street cut.
3 Illustrative Example

In this section, the application of the image segmentation model is illustrated using a slope example modified
from a real case history, namely the Congress Street cut at Chicago (Wang and Goh 2021a). The failure
mechanism and the sliding volume predicted using the trained image segmentation model will be validated by
comparing against the benchmark RF-FEM predictions.

3.1 Description

Figure 3 shows the details of the example, and Table 1 shows the statistics of the material parameters. The fill
layer is statistically homogeneous while the three clay layers are each characterized using spatially variable
undrained shear strength S,. The commercial finite element software Optum G2 is used to perform the strength-
reduction calculations to obtain the displacement field. The Karhunen-Loéve expansion with 1000 terms and a
single exponential autocorrelation function is used to generate random fields within the Optum G2 software. The
discretization error is approximately 2 x 107, which satisfies the requirement suggested by Huang et al. (2013)
(i.e., 107). To validate the results of the image segmentation model, a direct Monte-Carlo Simulation (MCS) run
comprising finite element analyses of the 100,000 random field samples is first performed using Optum G2. In
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this regard, the failure mechanism predicted using the image segmentation model will be compared with the
benchmark results obtained using the RFEM model. Table 2 summarizes key information of the model.

Table 1. Statistics of the material parameters considered in the illustrative example (Wang and Goh 2021b)

Unit Weight Friction angle ¢ (°)  Undrained Shear Strength S, (kPa) Scale of fluctuation

Layers

(kN/m?*) (SoF)
Mean CoV Distribution SoFy(m)  SoF, (m)

Sand 21 30

Clay 1 19.5 - 85 0.25 Lognormal 35 10
Clay 2 19.5 - 70 0.19 Lognormal 35 10
Clay 3 20 - 80 0.20 Lognormal 35 10

Table 2. Configurable hyper-parameters of the image segmentation model
Solver Learning rate Minimum batch size L2 regularization rate
Stochastic gradient descent 0.01 16 0.001

3.2 Results interpretation

Following the implementation procedures outlined in Section 2.3, 500 pairs of random fields and segmentation
results are generated as the training dataset. Another 250 pairs of data are then generated as the validation
dataset. Figure 4 shows the typical training and validation processes. The accuracy calculations, which are
evaluated based on a pixel-wise comparison between the predicted and the true results, indicate that the deep
learning image segmentation model is reasonably trained (~97% accuracy).
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Figure 5. Comparison of failure mechanisms predicted using FEM model and the trained image segmentation model.

Figure 5 compares the failure mechanism predicted using the FEM model and the image segmentation
model for two selected realizations. The input random fields are shown in Figures 5 (a) and (e), and the
associated FEM calculated failure mechanisms are shown in Figures 5 (b) and (f). A deep-seated failure mode is
observed in Figure 5 (b) while a shallow failure mode is seen in Figure 5 (f). As shown in Figures 5 (c) and (g),
the image segmentation model reasonably identifies the sliding mass and the intact mass for the two selected
realizations although the boundary is not as smooth as that predicted using the FEM model. The failure surfaces
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obtained using the FEM model and the image segmentation model are co-plotted in Figures 5 (d) and (h); the
good agreement between the two sets of results indicate that the image segmentation model is effective in
predicting the failure mechanism.

Figure 6 compiles the failure surfaces (e.g. Figure 5 (d)) associated with all the random fields. In this way, it
is possible to visualize the extent of the area covered by the failure surfaces. With reference to Figure 6 (b), the
failure surfaces can vary significantly in a spatial manner and cover a quite large area of the slope. While a deep-
seated failure mechanism can be obtained in some realizations, the slope can also fail following a shallow failure
mode. In this regard, it is necessary to run enough realizations for a rigorous evaluation of the failure
mechanism.
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Figure 6. Spatial distribution of failure surfaces predicted by (a) the image segmentation model, and (b) FEM model.

Figure 6 (a) shows the predictions made using the image segmentation model. By visual inspection, the
spatial distribution of the failure surfaces is reasonably predicted. Similar to the results shown in Figure 5 (c),
although the boundary is not very smooth, both the deep-seated and the shallow failure modes are reasonably
predicted. A matching rate index (MR), defined as follows (Zhang et al. 2022), is used to quantify the accuracy.

TP+TN

MR() = 75 T FP TN T FN M

where TP is the total number pixels where the image segmentation model correctly labels as failure surfaces; FP
refers to the number of pixels where the model wrongly labels as failure surfaces; 7N then represents the total
number of pixels where the model correctly identifies as non-failure surfaces; and FN is the number of pixels
where it wrongly identifies as non-failure surfaces. According to Eq. (1), the image segmentation model achieves
a matching rate of 0.938 (93.8%), signifying that the model is highly accurate in predicting the failure
mechanism of the slope under study.
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Last, Figure 7 compares the normalized sliding volume predicted using FEM model and the image
segmentation model. The normalized sliding volume refers to the percentage of the total volume that belongs to
the sliding body. In general, the normalized sliding mass ranges from 30% to 50%, which provides key
information for failure mitigation. By visual inspection, the histogram representing the results of the image
segmentation model reasonably agrees with the benchmark results obtained using the FEM model, which further
confirms the accuracy of the image segmentation model.
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4 Discussions and Conclusions

There are some limitations associated with the present study. The definition of the failure mechanism is
simplified as the pattern and location of the failure surface. Some aspects of the failure mechanism, e.g., the
velocity field and stress-deformation distribution of the slope, are not predicted using the deep-learning
technique. Further research is warranted. In addition, additional parametric studies are needed to understand the
impact of the random field parameters, e.g., scale of fluctuation, on the slope failure mechanism.

In conclusion, this paper presents an efficient deep learning-based image segmentation model to predict the
failure mechanism of a slope in spatially variable soils. The image segmentation model can facilitate a rigorous
investigation of the slope failure mechanism without incurring the high computational cost required by the
Monte-Carlo simulation and the random field finite element analysis. While this paper provides a preliminary
investigation on the use of image segmentation technique to facilitate the random field finite element analysis,
additional studies pertaining to the influence of the training sample size and the applicability of the method in
handling multiple cross-correlated random fields are warranted. Major conclusions are drawn as follows:

(1) The concept of using the image segmentation technique to facilitate the slope failure mechanism
investigation in spatially variable soils is effectively validated.

(i1) The proposed image segmentation model successfully delineates the sliding mass and the intact mass.
With a matching rate of 93.8%, the spatial distribution of the failure surfaces, the failure model and the
normalized sliding volume are accurately calculated using the image segmentation model.
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