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Abstract: Reliability analysis of slopes in spatially variable soils is often faced with a huge computational burden. To
effectively reduce the number of numerical models in reliability analysis and alleviate the calculation pressure, this paper
proposes an active-learning multivariate adaptive regression spline (MARS) method for reliability analysis of spatially variable
slopes. Firstly, Latin hypercube sampling is used to obtain the initial training samples. The active-learning function is then used
to update the MARS surrogate model by searching for new training samples around the limit state surface. The failure
probability of the slope can be calculated using Monte Carlo simulation (MCS) after obtaining an appropriate surrogate model.
A typical slope with spatially variable soils is used as an example to verify the efficiency of the proposed method. The results
show that the proposed method not only reduces the quantity of calculations required, but also achieves high accuracy in
estimating slope failure probability.
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1  Introduction

Due to geological, environmental, and physicochemical factors on natural soil sedimentation, soil characteristics
tend to be spatially variable (Phoon and Kulhawy 1996; Dasaka and Zhang 2012). Even with various exploration
and testing methods, the resulting soil properties remain uncertain (Li et al. 2017; Deng et al. 2020; Deng et al.
2022). The traditional slope stability safety factor evaluation method does not consider the spatial variability of
soil parameters. To this end, a considerable number of studies have been conducted in recent years on the spatial
variability of slope soil parameters (Cho, 2010; Li et al. 2017; Deng et al. 2017; Wang et al. 2020; Deng et al.
2021).

Many methods have been proposed for slope reliability analysis, the simplest and most effective of which is
direct Monte Carlo simulation (MCS). Its advantage is that when the number of samples is large enough, an
unbiased estimation of failure probability with high accuracy can be achieved. Nevertheless, this method
necessitates a significant amount of computation. When using the finite element or finite difference strength
reduction method (SRM), the cost of the MCS method will be very high (Zhang et al. 2011). Especially for the
case with a small failure probability, hundreds of thousands of numerical simulation calculations (Kang et al. 2015)
are often needed, such that the computational workload is too large to meet the requirements of practical
application. To reduce the calculation workload, some advanced MCS methods are proposed, such as the important
sampling method and subset simulation method, but these methods still need to call a certain amount of slope
stability calculation times. To better reduce the computational workload, some scholars have proposed to construct
an efficient explicit surrogate model to replace the numerical calculation model with high workload, such as
support vector machines (SVM) (Samui et al., 2013), Artificial Neural Network (ANN) (Cho, 2009), and Gaussian
Process Regression (GPR) (Kang et al., 2015). Nevertheless, these studies only consider finding a more robust
algorithm to reduce the requirement of sample points, rather than developing a method to provide more sample
points for the construction of response surface models. The number of sample points is the number of calls to a
deterministic analysis, which can lead to computationally heavy and long computation times, especially when
using finite difference methods to obtain safety factors (He et al. 2020).

In recent years, surrogate models proposed by some scholars still require a certain number of training samples
to obtain models with higher prediction accuracy. To improve the efficiency and accuracy of slope reliability
research, this paper proposes a spatial slope reliability analysis method based on active-learning MARS-MCS
(AMARS-MCS), which can obtain a surrogate model with high accuracy in a small number of training samples.
First, the Karhunen-Lo¢ve (K-L) expansion method is used to discretize the random field of soil parameters, and
a large sample pool and basic training samples are generated. The active learning function is used to select the
optimal sample, and the selected optimal sample is substituted into the training sample. On this basis, the MARS
surrogate model is established. Finally, the slope reliability analysis is carried out by using the MCS method. This
paper uses a typical slope in spatially variable soils as an example to illustrate the effectiveness of the proposed
method.
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2 Simulation of Spatial Variability of Soil Parameters Using Karhunen-Loéve Expansion Method

Due to the influence of geology and physicochemical action in the formation process of soil, the parameters of soil
shear strength show spatial variability. The K-L expansion requires fewer random variables, and has high
computational accuracy and efficiency. Therefore, this method is used in this paper to discretize the random field,
and the shear strength parameter correlation logarithmic random field can be expressed as:
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where, 7 is the number of truncation terms which needs to be determined according to the discrete accuracy ; 4,

are the eigenvalues corresponding to the autocorrelation function; f/.(x,y) is the characteristic function

corresponding to the autocorrelation function; 4 . and o, are the mean and standard deviation of the

corresponding normal distribution parameter Ini respectively.

In view of the fact that the gauss type correlation function is continuous and derivable everywhere, the Gauss
type correlation function is chosen as the spatial autocorrelation of soil parameters in this paper(Cami et al. 2020
and Zhou 2021):
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where, 0, and O, are horizontal and vertical correlation distance respectively; L, and L, are the difference

values of the corresponding coordinates of two points in the soil space, respectively; y, ; is a standard normal

i,

random variable.
3 Multivariate Adaptive Regression Spline Method

The multivariate adaptive regression spline method is a nonlinear and nonparametric regression method based on
a piecewise strategy proposed by Friedman (1991). This method can effectively use the sample data to establish

the relationship between the input variables and their responses. In the system, the real function f(&) can be
expressed as follows:

S@) =@ =a,+ a,B,&) 3)

where, f (&) is the predicted value of the MARS model output; & = («fl 3Cs5es fﬂ) is a set of input variables;

a, 1is the coefficient of the mth basis function; coefficient a, can be obtained by least squares fitting of training

samples.
The MARS algorithm has two processes, forward selection and backward pruning. The forward process

algorithm starts with only one constant term basis function B, (x) =l1; each iteration generates two new basis

functions, then identifies the new basis functions, and finally obtains the approximate model. The model updated
in each iteration is as follows:

f(&)=a,+ iamBm (&) +a,.,B()max(0,x; —1)+a,,,B,(5) max(0,7 - x,) 4)

where, a,, and a,,

previously determined basis function, 0<1<M. In general, the forward process algorithm will produce an over-
fitting model, because the MARS algorithm allows the use of the previous basis function to construct a new basis
function, resulting in a decrease in the contribution of the initial basis function. Therefore, the backward process
algorithm should be adopted to improve the prediction ability of the model.

The backward process algorithm takes every cycle, deletes the original basis function and obtains the sub-
model, using generalized cross-validation (GCV). The specific form is as follows:

can be used for the least squares fitting calculation of training samples; B, (ff) is the
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where, C(M) = trace(B(BTB)i1 B’ ) +1+dM ; tmce(B(BTB)il B" ) +1 is the number of effective coefficients

of the model. f " (xi) is the corresponding prediction value at the sample point; d For a penalty factor between

2 and 4, generally 3.
4  Active Learning Function

After the initial sample points are determined, the surrogate model is iteratively updated. The active learning
function is based on the current selected MARS model, and each time an optimal sample point (obtained by each
simulation analysis) is selected to join the training sample set to achieve the purpose of iterative updating of the
MARS model. In order to select the optimal sample point, the sampling method is based on MCS pool (Echard et
al. 2011; Pan, and Dias, 2017).

The active learning function construction is always a difficult point (Xiao et al., 2018). In recent years,
scholars have proposed an empirical active learning function based on sampling principles (Echard et al. 2011;
Xiao et al. 2018). On the basis of predecessors, Li et al (2018) proposed an efficient active learning function
considering a distance penalty term:
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where, G() is a functional proxy model. For the classifier, only the prediction result is given instead of the
numerical value. G() can be replaced by F(u) . For other models, é() need not be changed; d (uT,S )

represents the minimum distance between the point of the sample set and #, in the Independent Standard Normal
Space; d(S) is a minimum distance limit that varies and can be calculated as follows:
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where, A is a constant coefficient term between 0.1 and 0.5, and 4=0.2 is used. The constant coefficient term is
followed by a distance value, which represents the distance between two sample points in the sampling area.

5  The Steps of the AMARS-MCS Method Execution
To consider both stratigraphic uncertainty and spatial variability of soil parameters in the slope, a full probabilistic

design method combining the AMARS-MCS model with the random field model is proposed. The implementation
procedure is presented, as shown in Figure 1.
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( Probability analysis ) ( Deterministic model )

Determining random field statistical parameters :
1. Mean, coefficient of variation, distribution type and v
correlation coefficient

2. Determination of correlation function and correlation
distance

In FLAC3D software, taking the
mean value of variables to establish
v slope stability analysis model

A small number of independent standard normal v
distribution samples & and a large number of independent Output the file ' Stability. Dat '

standard normal distribution sample pool X are obtained by | | calculated by the strength reduction
LHS method. Convert it to relevant non-normal random | |method in the finite difference
samples y, method'

Simulation of correlated non-Gaussian random fields using
KL series expansion method

Save the parameter values obtained by each random field discretization as
c.dat and f.dat, and get a new Nsim file ' Stability.dat '

Using active learning
function, select the *

best sample from the Call FLAC3D kernel to compute dat file and get Nsim corresponding
sample pool X and safety factor FS

replace it with the
training sample Building MARS model to verify accuracy
A

Whether the accuracy is satisfied

NO

Failure probability of slope calculated by MCS |

End
Figure 1. Flowchart of slope reliability analysis based on the AMARS-MCS method

6  Illustrative Example

This section will study the reliability of a single-layer c-¢ slope. Previous studies (Cho, 2010; Li et al., 2015; Liu
et al., 2017b; Liu, 2019) also analyzed the slope. Therefore, previous research results can be directly used to test
the accuracy of the proposed method.

6.1 Description and certainty analysis of slope

The slope model studied in this section is shown in Figure 2. The slope height is 10 m and the slope toe is oriented
at 45°. The soil parameters for the probabilistic stability analysis are shown in Table 1. This study only focuses on

the spatial variability of cohesion and internal friction angle of the soil. The correlation coefficient Pey is
assumed to be -0.5. Subsequently, the K-L expansion method with the assumed SOFs is used to discrete the random
fields.and other parameters are regarded as constants. Assuming horizontal fluctuation range 511 to 40, vertical

fluctuation range O, to 4, the random field is discretized, so that the discrete data corresponding to the centroid

of each random field unit can characterize the shear strength of the soil body of the unit. According to the known
parameters, the model is initially established by FLAC3D, and the safety factor is 1.228 as calculated by SRM,
which is very close to the results of 1.204 and 1.205 calculated by Cho (2010) and Liu et al. (2019), indicating the
correctness of the model.

15 critical sliding surface
(FS=1.228)
10
S
0
0 10 20 30

Figure 2 Slope model
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Table 1. Statistical characteristics of soil parameters

Soil parameters Mean Cov Distribution SOF Peo
c 10 kPa 0.3 Lognormal 0,=40 m, 6,4 m 05
17 30° 0.2 Lognormal 0,~=40 m, 5,=4 m ’
v 20 kN/m? — — — —

The symbol “~” means not applicable

The established model shown on Figure 2 includes 1190 quadrilateral elements and 20 triangular elements.
In order to compare with the results of Li et al. (2015) and Liu et al. (2019), a consistent grid division has been
employed.

6.2 Analysis of slope reliability results

Firstly, according to the random field statistical parameters and model centroid coordinates, the parameters are
dispersed to each centroid coordinate point, and the spatial variability is simulated to generate thirty slope models
with parameters. Then, the finite difference SRM is used to calculate the slope safety factor. Based on the thirty
training samples calculated by the SRM, the number of training samples is repeatedly increased according to the
active learning function. Figure 3 shows the variation of slope failure probability with the number of samples. It
can be seen from the figure that the failure probability tends to stabilize quickly with the increase of the number
of iterative samples. The relationship between the function prediction G1 and the calculated value G2 is shown in
Figure 4, which also shows the accuracy of the model. Table 2 lists the results (including Mean value of safety
factor prs, standard deviation of safety factor ors, and coefficient of variation COVEs) obtained by different
methods. It can be seen from Table 2 that the corresponding results of different methods are consistent. The
proposed method requires only 60 samples to obtain more accurate results, while the MARS-MCS method
proposed by Liu et al. (2019) requires at least 280 samples. This indicates that the proposed method can obtain
sufficiently accurate reliability calculation results with a small computational cost.
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Figure 3. Prchanges with the number of training samples Figure 4. Comparison of predicted safety factor and
calculated safety factor

Table 2. Reliability calculation results of different methods

Method LES OFS COVgs P¢
MARS-MCS (Liu et al. 2019) 1.198 0.114 0.096 2.92x107
1x10* LHS (this study) 1.184 0.103 0.087 2.72x102
AMARS-MCS (this study) 1.204 0.108 0.900 2.50x102

7 Conclusion

This study presents a spatially variable slope reliability analysis method based on AMARS-MCS, which combines
the advantages of an active learning function and MARS. In this study, a spatial slope is used as an example to
illustrate the effectiveness of the proposed method. The main conclusions are as follows:

(1) The AMARS model as used to analyze slopes with spatial variability can effectively establish the
relationship between the slope shear strength parameters and the safety factor.
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(2) For spatially variable slopes, the proposed method can obtain sufficiently accurate reliability calculation
results with a small computational cost.
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