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Abstract: Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such
as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils.
Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which
is specified by the number of measuring points and their corresponding values of the control variable. The number of
measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited
number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on
measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental
scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO,
for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of
testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum
expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The
proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing
apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes
to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary
arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms
of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring
points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction.
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1 Introduction

Soil-water characteristic curve (SWCC) represents the variation of volumetric water content (or effective
saturation) with the matrix suction, which is significant to estimate unsaturated soil parameters (e.g., unsaturated
shear strength and permeability coefficient) (Lu and Likos, 2004). Only a limited number of SWCC measuring
data can be obtained considering that the direct measurement of SWCC is often costly and time-consuming
through in-situ or laboratory tests according to some prescribed experimental schemes (i.e., the number of
measuring points and their corresponding values of the control variable). The uncertainty of estimating SWCC
based on limited data is inevitable, which depends on the data obtained from prescribed experimental schemes
and affects the estimation of unsaturated soil parameters and geotechnical reliability analysis (Phoon et al.,
2010). Determining an optimal experimental scheme is vital for reducing the uncertainty in SWCC estimated
from a limited number of data points.

Experimental design optimization (EDO) provides a rational vehicle to determine the optimal experimental
scheme for acquisition of measuring data in a cost-effective way (Sivia and Skilling, 2006). Several EDO
methods have been developed in the literature, including conventional experimental design optimization (CEDO)
methods based on classical statistics (e.g., Zhu and Gong, 2014) and Bayesian experimental design optimization
(BEDO) methods based on Bayesian inference and/or information theory (e.g., Zhang et al., 2015; Ding et al.,
2022). Compared with CEDO, the BEDO has an advantage of quantifying various uncertainties (such as inherent
variability, measurement error, and model uncertainty), which has been recently applied in geotechnical and
geological engineering to design in-situ instrumentation (e.g., Li et al., 2016) and site investigation programs

144



Proc. of the 8th International Symposium on Geotechnical Safety and Risk (ISGSR) 145

(e.g., Zetterlund et al., 2015). Despite of these previous studies on in-situ monitoring and sampling design,
research on applying BEDO to design geotechnical laboratory tests that can be troublesome and time-consuming,
e.g., SWCC test, is rare. Ding et al. (2022) proposed a BEDO approach for SWCC testing, which, however,
requires to implement the optimization procedure twice at two stages of the experimental design for determining
control and additional measuring points, respectively.

This paper presents a one-stage Bayesian experimental design optimization (OBEDO) method for SWCC
testing based on Fredlund and Xing (1994) (FX) model, which determines the optimal experimental scheme by
implementing a single run of optimization procedure. The proposed method adopts expected utility to quantify
the expected value of information provide by SWCC testing. The ancestral sampling and Bayesian method are
used to generate simulated data to evaluate the effect of uncertainty of soil parameters. The optimal scheme with
maximal expected utility is searched out with Subset Simulation Optimization (SSO), which improves the
efficiency of determining the optimal scheme in the design space. This paper starts with description of the
proposed OBEDO framework based on FX model, followed by quantifying the expected utility of candidate
experimental schemes and optimizing the experimental scheme by maximizing the expected utility using SSO
(Li and Ma, 2015). Then, the proposed approach is illustrated using a SWCC experimental design example.

2 One-Stage Bayesian experimental design optimization (OBEDO) framework for measuring SWCC

As shown in Figure 1, the proposed OBEDO framework starts with collecting available prior knowledge (i.e.,
prevailing SWCC models and typical ranges of its model parameters) on the SWCC of soils concerned before
testing and the information of testing apparatus and technique, which are used to determine the design space of
candidate experiment schemes. The proposed OBEDO framework is comprised of three steps: determination of
the candidate experimental schemes, calculation of the expected utility, U(E), of a possible experimental scheme
E that is specified by the number, n, of measuring points, and optimization of the experimental scheme
performed by SSO to maximize the U(E). Details of the three steps of the proposed OBEDO framework are
provided in the following three sections.

Testing apparatus Prior knowledge
(1)Testing range of matric suctions | + (1H)SWCC model
(2)Measuring accuracy (2)Typical range of model parameters

v

Determine candidate experimental schemes

v

Define the expected utility

y

| Optimize the experimental scheme by SSO |

C Export the optimal experimental scheme )

Figure 1. One-stage Bayesian experiment design optimization (OBEDO) framework for measuring SWCC

3 Candidate experimental schemes based on FX model

The trajectory of SWCC can be generally controlled by characteristic matric suction values (such as the air-entry
value y,, the matric suction at the inflection point y,, and the matric suction corresponding to the residual

water content i/, ) and their corresponding degrees of saturation. For a given SWCC parametric model, the v, ,
v,, and y, divide the SWCC into four partitions. There are, at least, four control measuring points selected
within the ranges of the matric suction, i.e., (0,y,],(v,.v,], (v,.v.], (v,,v, ) to capture the general trajectory
of the estimated SWCC and a certain number of additional points selected within the ranges of the matric
suction, i.e., (0,y,,) to reduce its associated uncertainty. Let » denote the total number of measuring point. Each
candidate experimental scheme, £, of SWCC testing is comprised of four control points (i.e., A1, A2, A3, A4) and
(n-4) additional points (i.e., B1-Bn4), as shown in Figure 2. Nevertheless, during the experimental design stage,
the w,, v,, and y, values corresponding to the prescribed SWCC model are unknown. The expected value (i.e.,
v,, v,,and v, )of v, w,, v, is adopted to constrain the matric suction range of control point (i.e., A1, Az, As,

A4), which can be determined using Monte Carlo simulation based on the prior knowledge of SWCC model
parameters. Consider, for example, the FX model given below:
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where as, ng and my are the model fitting parameters of FX model; S, ; is an effective degree of saturation
corresponding to ¥/,; ki is the slope at the inflection point; y' is the matric suction where the SWCC starts to
drop linearly; S’ is an effective degree of saturation corresponding to ¥'; and k2 is the slope at the point
(y',S!). These symbols are illustrated in Figure 3. N, estimates of y,, y,, and y, can be obtained with the
number, N,, of random samples of as, nsy and my simulated from their uniform prior distribution through
Monte Carlo simulation. Based on the N, estimates of y,, v, , and v, , their respective mean values (i.e., ,,
w,, and ) are evaluated, with which the matric suction values (i.e., Wa, ,Wa,,Wa, , and wa, ) of the four
control measuring points A1, Az, As, and As are, respectively, assigned within the matric suction ranges (0,7, ],
w,.wv.1, w,,w.], and (¥,,y,). The matric suction values (i.e., yp - s, ) of n-4 additional measuring
points Bi1-Bn4 belong to the range, (0, ), but should not be equal to any values of the four control measuring
points A1, Az, Az, As.

—:SWCC
V., -V, :matric suction of point 4,-4,

v ,:air-entry value

v, :residual matric suction

S, residual effective saturation
(l//,,Se . ) :inflection point

(‘//’,S; ) :points where curve starts

Vg - ¥p, , :matric suction of point By,...,B, 4

¥, :mean of air-entry value
¥, :mean of residual matric suction

v, :mean of matric suction of inflection point

to drop linearly
k,:slope at the inflection point
k, :slope at point where curve starts

Effective degree of saturation.S,

Effctive degree of saturation.S,

N to drop linearly
Q, Q, Q, o, | s I .5
0 (’Z) (%) (‘/7 .) (*//,,1) Matric suction y 0 v, Matric suction y
Figure 2. Illustration of control measuring points and Figure 3. Typical soil-water characteristic curve (Zhai et al.
additional measuring points 2017)

Let y, denote the feasible discrete matric suction value, and a set of possible value of y, can be
expressed as Q) =(0: Ay, v, ] U (W, Ay, W, ] U (W, Ay, v, ] U (W,.:Ay, 1y, ], where Ay,, Ay,, Ay,,
Ay, are discrete intervals (e.g., the minimum increment of the matric suction that can be applied by the testing
apparatus). The above discretization procedure of the matrix suction results in a total of N, possible values of
w, . Assume that N, Na,, Na,, and N,, values of y, in Qo fall within (0,y,], (w,.v,;], (v,,w¥,], and
(v..v,) , respectively, which constitute the set Qu, , Qa,, Qa,, Qa, . The matric suction values (i.e.,
Wa>Wa,sWa, » and s, ) of the control measuring points Ai, A2, Az, and As satisfied wa, € Qa, , wa, € Qa, ,
wa, € Qa,, and wa, € Q,, , respectively. Let Qpa denote the set of possible values of the matric suction (i.e.,
we, ) of each additional measuring point B; (=1, 2, ..., n-4), which can be written as a set
Qpa =1{ws, |Ws, €Qoandysy, ewa,} (=1,23,4;=12,.,n—4) . Each set of possible values
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of wa,,Wa,.Wa, » Wa, and g, (=1, 2, ..., n-4) constitute a candidate experimental scheme E, which can be
expressed as

E:{WAI 9WA2 7!//A3 9V/A4 7l//B| ’V/Bz 9V/B3 9"'7l//B”_4} (5)

The optimal experimental scheme is determined by maximizing the expected data worth (i.e., the expected
utility U(E)) of the SWCC test performed according to candidate experimental schemes using SSO. Calculations
of the U(E) of each candidate experimental scheme, E, and its optimization through SSO are provided in the
following two sections, respectively.

4 Expected utility of candidate experimental schemes

Consider, for example, a candidate experimental scheme E. The data worth of SWCC test can be quantified by
the relative entropy, R(E), that indicates the statistical difference between the updated distribution, p(®|S,, E),

of SWCC model parameters, ® , given a set of newly-obtained data (e.g., values of effective degree of
saturation, Se), obtained according to £ and the prior distribution, p(@ | E), of ® . R(E) can be written as (Sivia

and Skilling 2006)
R(E)=[p(®[S,.E)n[p(O[S,,E)/ p(©|E)]d® .

Without the real measurement data at the experimental design stage, the expected utility, U(E), of SWCC
measurement data corresponding to £ is adopted to quantify the expected worth of data, which is evaluated as
(Huan and Marzouk, 2013)

U(E)=[R(E)p(S.|E)S, (7)

where p(S, | E) is the probability density function (PDF) of Se corresponding to £. For the sake of conciseness,

more details of the calculation of expected utility are not provided herein and can be referred to Ding et al.
(2022) for interested readers.

For a given number of measuring points, the optimal experimental scheme E is taken as the scheme with
the maximum U(F) among candidate experimental schemes, i.e.,

E*ZargmaxU(E) (3)
The next section makes uses of SSO to identify the £° among candidate experimental schemes.
5 Optimizing the experimental scheme with Subset Simulation

As mentioned in Section 3 entitled “Candidate experimental schemes based on FX model”, the number of
candidate experimental schemes is equal to Na, -Na, - Na, - Na, -Cii*s . Identifying the E° among candidate
experimental schemes can be formulated as an optimization problem below:

max U (E)

- . . ©)
s.t. E:{V/Al ’l//Az ’l//A3 71//A4 >VIBI ’l//Bz ’l//B3 >'~-7l//BM };VIA1 € QA‘ (l = 1’27-“,4);‘//B/ € QD\C (] = 172,-";”_4)

where the feasible domains (i.e., Q4, and Qga) of wa, (=1, 2, 3, 4) and w3, (=1, 2, ..., n-4) are defined

previously in Section 3. In this study, SSO is used to search the E* in the design space. SSO is a global
optimization algorithm that was originally developed from Subset simulation (Li and Ma, 2015). The proposed
OBEDO approach makes use of SSO to identify the optimal experimental scheme E” according to the expected
utility, where only one-stage optimization is involved, and returns the one with the maximum expected utility as
the E”, which contains the optimal control and additional measuring points. Hence, the calculation procedure is
simplified compared with the two-stage optimization approach.

6 Illustrative example
6.1 Optimal experimental scheme for SWCC testing

In this example, the prior knowledge of FX model parameters are taken as their respective typical ranges
as € (0kPa,50kPa] , ns €(0,10], ms €(0,20] and o, €(0,1], which are consistent with those reported in
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literature (Tao et al. 2021). Consider, for example, a SWCC testing apparatus with the measured matric suctions
range of (0, 2000kPa), which is divided into the matric suction range of (0,16], (16,26], (26,98], and

(98,2000) by w, =16kPa, y,=26kPa, and y, =98kPa estimated using the prior knowledge of FX model

parameters. Then, the feasible values of the matric suction include Qo={2, 4, 6, ..., 14, 16, 18, ..., 24, 26, 28,
..., 96,98, 148, 198, ..., 1948, 1998} (in kPa) with Ay, =2kPa, Ay,=2kPa, Ay,=2kPa, Ay,=50kPa.

For consideration of the effect of » on the data worth of the candidate experimental scheme, a series of »
values are considered, including 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, and 25. For each of » value, the
SSO runs with conditional probability ps=0.1, the maximum number of simulated levels Ns=20, and 2000
samples per level is used to obtain the optimal matric suction values and their corresponding U(E") values, as
shown in Figure 4. Figure 5 shows the variation of U(E") as a function of 7. It is found that the U(E") increases
rapidly as » is less than 17. The improvement of U(E") becomes marginal by adding more measuring points as
the » is greater than 17. As a result, the optimal number of measuring points is taken as #=17 in this example.
Correspondingly, the optimal experimental scheme E* (given n=17) is {6, 12, 20, 48, 64, 86, 148, 298, 398, 648,
848, 948, 998, 1048, 1198, 1448, 1598} (in kPa), of which the expected utility (i.e., U(E")) is 5.27.

6.8 6
L o _ 5.5
= Eg S
433 = AORIIIR 55 4
= QAR K IR KD % 4
= RRNNARNIARRIGK 235 .
£ 24 SORBOEOBIANE 21
2% U4 3 TE 3
— S ——n=4 —t—n=5 F
0.8 T o : ;
. 0 5 10 15 20 25 30
0 Numb&. Of Slmulatml‘ The number of measuring points
Figure 4. Evolution of SSO for different numbers of Figure 5. Expected utility with different number of
measuring points measuring points

6.2 Further illustration with real data of loess

The measured SWCC data of loess that is reported in literature (Punrattanasin et al. 2002; Huang et al. 2009;
Chen et al. 2011; Jiao et al. 2016; Wang et al. 2018) is used to verify the effectiveness of proposed method, as
shown in Figure 6. The utility (i.e., R(E)) that is calculated using Eq.(6) of measured SWCC data obtained from
Punrattanasin et al. (2002), Huang et al. (2009), Chen et al. (2011), Jiao et al. (2016), and Wang et al. (2018) are
determined as 1.90, 2.06, 0.51, 1.99, and 0.46, respectively. As discussed in subsections 6.1 entitled “Optimal
experimental scheme for SWCC testing”, the optimal experimental scheme, E*, obtained from the OBEDO
approach and referred to as one-stage Bayesian optimal scheme (OBOS) is {6, 12, 20, 48, 64, 86, 148, 298, 398,
648, 848, 948, 998, 1048, 1198, 1448, 1598} (in kPa), and its expected utility (i.e., 5.27) is superior to the utility
of the measured data of loess reported in literature.
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Figure 6. SWCC measured data of loess Figure 7. Utility of random experimental schemes

It is worth to point out that the number of measured SWCC data obtained from Punrattanasin et al. (2002),
Huang et al. (2009), Chen et al. (2011), Jiao et al. (2016), and Wang et al. (2018) are 7, 10, 6, 9, 4, respectively,
which are not consistent with the optimal number (i.e., 17) of SWCC measurements in £* determined by the
proposed method. To enable a consistent comparison, 17 data points are randomly selected from the 36
measurement data points of the loess shown in Figure 6 to mimic the experimental scheme with 17 measuring
points, which is referred to random experimental schemes (RES) herein. Figure 7 shows the values of the utility
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of the 10000 RESs by circles, among which the maximum value is around 4.08 and its corresponding RES is
referred to as random optimal scheme (ROS) indicated by the dotted line in Figure 7. The utility of ROS is less
than the expected utility (i.e., 5.27) of OBOS obtained from the proposed approach, which demonstrates the
effectiveness of proposed OBEDO method.

7 Summary and conclusions

This paper developed a one-stage Bayesian experimental design optimization (OBEDO) approach for
determining the optimal experimental scheme of SWCC test using the prior knowledge and the information of
testing apparatus. The candidate experimental scheme with the maximum expected utility is identified as the
optimal experimental scheme using Subset Simulation optimization (SSO). The proposed OBEDO approach was
illustrated using a design example. It was shown that the expected utility of the optimal experimental scheme
improves by adding more measurements. Such an improvement becomes marginal as the number of measuring
points is sufficiently large (e.g., 17 in the illustrative example). Hence, the optimal number of measuring points
can be determined as a trade-off between the improvement of data worth and the commitment involved in
testing. The proposed approach was also verified using real loess data. Results showed that the arbitrary
arrangement of measuring points of SWCC test is hardly to give the optimal experiment scheme in terms of the
expected utility (or values of information). The proposed OBEDO approach provides a rational tool to optimize
the arrangement of measuring points of SWCC test based on prior knowledge and the information of testing
apparatus so as to obtain SWCC measurement data with relatively high value of information for uncertainty
reduction.
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