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Abstract: The bearing capacity of piles has a large variability when estimated from prior geotechnical investigation alone.
On-site tests are effective in geotechnical risk management, particularly for ground whose performance is not well known
and/or for new piling methods. The authors have been attempting to develop simple static load tests with press-in piles.
However, there are issues in estimating the ultimate bearing capacity; (1) it is difficult to apply a large load owing to the
limitation of piling machines and reaction piles; (2) excessive load may affect the performance of piles. Thus, there is an
urgent need for a method to extrapolate load-settlement curves and estimate ultimate capacity. Accordingly, we investigated
the relationship between the measured ultimate capacity, the estimated ultimate capacity by Chin’s extrapolation, and the
maximum load used for the estimation, based on a database of pile load tests. It was found that the ratio of the measured load
to the estimated one follows a three-parameter (TP) lognormal distribution well with the maximum load as the lower bound.
Moreover, the effect of the TP lognormal distribution on the reliability of the structure is modeled and discussed.
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1 Introduction

In-situ verification of pile bearing capacity remains an effective tool against geotechnical risk because there is
relatively large variability when the capacity is estimated from prior ground investigation alone, particularly for
unusual ground types (e.g., rock layers) and new piling methods where the performance is not well known.

The authors are investigating a method to assess the pile capacity by simply pressing piles, which can be
easily applied for all piles after installation (Suzuki and Ishihara, 2019). However, there are some considerable
issues in confirming the ultimate capacity; (1) it is difficult to apply a large load owing to the limitation of
construction machines and reaction piles; (2) an excessive loading history may affect the performance of piles.
Therefore, extrapolation of the incomplete load-settlement curve is required to estimate the ultimate load.

Numerous researchers have proposed and evaluated methods for the extrapolation of the load-settlement
curve. Galbraith et al. (2014) summarized the variability of the estimation and the settlement normalized by the
pile diameter for Chin's extrapolation method (Chin 1972), and the authors reported that the coefficient of
variation (COV) of the estimation decreases as the settlement increases. However, in addition to the settlement,
the maximum load of the test can be a critical piece of information in the data of loading tests.

In this study, we extrapolated load-settlement curves using Chin's method and estimated ultimate capacities
based on the FHWA database. Moreover, we investigated the probability distribution of the estimation error of
the extrapolated capacity and found that a three-parameter (TP) lognormal distribution fits it well. Lastly, we
examined the effect on the reliability of the structure based on parametric studies.

2 Extrapolation Curves and Database of Pile Load Tests

Hyperbolic approximation using Chin’s method uses only two parameters (Eq. 1) and is often employed to
extrapolate the load-settlement curve of a pile was applied in this study (Figure 1). It was omitted due to
limitations of paper space; however, it was found that the formulae derived by Chin, Van Der Veen (1957),
Hansen, Uto et al. (1982), and Zhang and Zhang (2012) did not exhibit a significant difference in the
extrapolation variation. Each method has been explained and described by Fellenius and Rahman (2019), except
for Uto et al. (1982), which represented the load-settlement curve with cumulative distribution function (CDF)
for the Weibull distribution.
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where Q.=ultimate capacity, Sy=characteristic settlement, Q.,=capacity, S,=settlement.
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Figure 1. [llustration of the load-settlement curves and the extrapolation.

In total, 129 load-settlement curves of static push-in tests were used in FHWA Deep Foundation Load Test
Database (DFLTD) version 2.0 (e.g., Petek et al. 2016; Kalavar and Ealy 2000) under the following conditions;
the ultimate bearing capacity is observed directly; the number of measurement points is sufficient for
extrapolations, and the type of the piling methods is either drilled shafts or impact-driven piles. The ultimate
bearing capacity, Q1o, is defined as that when the pile head settles down at 10% of the pile diameter, D.

Figure 2a illustrates the relationship between measured ultimate bearing capacity, Qiom, and maximum
loads, Pmax, both normalized by the estimated capacity, Qesr. Accordingly, each curve is fitted using only the data
whose capacity is under the maximum loads based on the least square method. The line y=1.0 indicates
Qes=Qiom, and the line x=y indicates Pua—=Qiom. Although some of the ultimate capacities of the open-ended
impact driven piles became lower than those of the maximum load (indicating the case where the capacity
softens as the piles settle downs), there were no differences between pile types. Based on the sufficiently small
number of softened specimens, it can be inferred that the maximum load plays a role in the lower bound.
Moreover, since all the observed data were used equally in fitting the curves, the ratio of measured to estimated
capacities, Q1om/Qest, does not converge to 1.0 at Pumad/Qes. Accordingly, some techniques could be considered,
such as thinning the data appropriately or weighting the observations (e.g., Nakatani et al., 2009).

Figure 2b depicts the sample mean and COV of the ratio, Qiom/Qes;, in @ moving window of size 0.1. In this
study, only data within +3¢ of the mean were used in the calculation of the mean and COV to exclude outliers.
When the maximum load exceeded 30% of the estimated capacity, the estimated value shows good agreement
with the measured value. Meanwhile, when the maximum load is smaller, the capacity is overestimated to the
measured value. In general, the COVs are in good agreement with those reported by Matsuo et al. (1989). The
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(a) Scatters of ultimate bearing capacity and the estimation  (b) Sample mean and COV in the moving window of size
by Chin's extrapolation. 0.1.
Figure 2. Variation of ultimate bearing capacity estimation using Chin's extrapolation in relation to maximum load. ID_Op=
open-ended impact-driven piles, ID_Cl= closed-ended impact-driven piles, and DS=drilled shafts. The number of piles is
ID_Op: 27, ID_CI: 46, DS: 56, respectively.
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authors reported that the error in the estimation of ultimate capacity using Weibull formula had about 34% of
COV at 40-60% loading level and about 6% at more than 90% loading level, though the reported loading level
was defined as the ratio Pumax/Q10m, N0t Puax/Qest.

Figure 3 shows the histogram of Qiom/Qest at Pma/Qes[ 10.7 with fitting curves of ordinary lognormal, TP

lognormal, and truncated (TC) lognormal distributions. The distributions were fitted using the maximum
likelihood estimation method. The probability density function (PDF) of TP lognormal is as follows:
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where m indicates bias, s denotes a scale parameter, and J refers to the lower bound (also called location). The
ordinary lognormal distribution function is Eq. 2 with 6=0. The TC lognormal function is the ordinary lognormal
PDF that becomes zero when the value is less than 6 and adjusted so that the sum of the probability densities
becomes one with reference to Najjar and Gilbert (2009). Both TP and TC lognormal distribution naturally have
a well-fitted lower hem, whereas TC does not have a well-fitted upper hem as well as ordinary lognormal.

Table 1 lists the results of Akaike information criterion (AIC) (Akaike 1973) and the best fitted functions.
AIC = -2InL + 2k, where k denotes the number of estimated parameters, and L denotes the maximum value of the
likelihood function for the model.

2 Table 1. AIC of fitting lognormal functions.
N=66 Pr/Owr Sample Ordinary TP TC
. — == Lognormal logn. logn. logn.
é —— TP lognormal 03 36 35.0 36.8 37.0
.g‘ ..... TC lognormal 0.4 42 31.1 33.0 33.1
E‘ 1 I 0.5 50 30.6 27.5 31.8
£ 0.6 59 10.6 44 8.4
=)
E 0.7 66 40.2 25.5 329
1
I 0.8 47 -31.7 -34.6 -17.7
,! 0.9 84 -97.1 -115.7 -95.1
00 < 1 D) 3 Note: Bold indicates the minimum AIC in three candidate
distributions. TP=three parameter, TC=truncated,
Q1om/Qest logn.=lognormal

Figure 3. Statistics of ultimate bearing capacity estimation
using Chin's extrapolation method. Pya/Qesd 10.7

When P/ Qest is higher than 0.4, TP lognormal distribution is better fitted than others. While Pua/Qes: is
less than 0.5, the differences are minimal. Moreover, the ordinary/TP lognormal functions are easily used by
computing modules, such as scipy in python (Scipy community, n.d.), and these would be appropriate for the
model.

3 Mathematical Formulation for Reliability
In this section, the reliability index, f, is introduced based on the TP lognormal distribution. Here, if the random

variable X with mean ux and variance ox* follows a lognormal distribution A(mx, sx*) with lower bound, Jx, the
parameters have the relations expressed in Egs. 3 and 4.

1
szln(,uX—ﬁx)—Esf( 3)

Sy = 11’1|:1+[IUG+5J ] (4)

Here, failure is defined as the case where the capacity, R, is less than the load, S. The probability of failure is
as follows:

P, =Pr(R<S =ﬁpr (R<S|x,3) £, (x) fs (v)dxdy = D (~p) ©)
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where @ denotes the cumulative distribution function (CDF) of the standard normal distribution. If R and S
follow independent ordinary lognormal distributions (i.e., dz=ds=0), then the reliability index is expressed by the
well-known Eq. 6; however, it is not clear for TP lognormal.
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When R and S follow independent TP lognormal distributions, the reliability index can be introduced using
the normalization as follows. First, R and S are transformed into x and y which follow the standard normal
distribution, respectively. The line R=S is also transformed in coordinates into the curve, Eq. 9.
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If R and S are independent, the point with the reliability index, f, has the minimum graphical distance from
the origin O to the curve R=S. If a minimum distance exists, then it is denoted by C(xy, yy), then the curve R=S
and the line OC are orthogonal at point C.
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A simultaneous equation is used in Eq. 9 to 11, and xy and yr are derived. Finally, the reliability index is
obtained by substituting them into Eq. 13.
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4 Parametric Study

In this section, the effect of the maximum load of the load test on the reliability is investigated based on
parametric studies. The estimation reliability of the extrapolation is a function comprising three parameters: bias,
scale, and lower bound. Since the maximum load leads to both an increase in the lower bound and a decrease in
scale, the two should be evaluated independently. The case was divided into three aspects: the existence of prior
information, the type of COVq, and the existence of lower bound (i.e., ordinary or TP lognormal distribution).

For simplicity, it is assumed that the estimated bias always becomes 1.0 when the lower bound increases
from 0 to 1.0, and the estimated COV decreases linearly from 0.6 to 0.1 with reference to Figure 2b. However,
when the bearing capacity is estimated solely from ground investigations, COV@=0.6 is larger than the COV of
about 0.3-0.4 (e.g., Yang et al. 2015). Therefore, it is unreasonable to estimate the capacity from the load-
settlement curve alone when the mechanism of the bearing capacity is obtained using the ground type and piling
method. Therefore, the following two types of prior information are considered; A) the ultimate bearing capacity
follows lognormal distribution with a COVq of 0.35 and that the mean equals the value estimated from the load-
settlement curve; B) there is no prior information for sites with new piling methods or unusual ground
conditions.
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Table 2. Cases of parametric studies.

Case Prior information Type of COVq Lower bound
Al COV=0.35 Linear (0.6 to 0.1) Yes
A2 Linear (0.6 to 0.1) No
A3 Const. (0.6) Yes
B1 None Linear (0.6 to 0.1) Yes
B2 Linear (0.6 to 0.1) No
B3 Const. (0.6) Yes
cov
0.6 0.5 0.4 0.3 0.2 0.1
6 L T y AN T 1 kd

Reliability index
Reliability index

00.0 0.2 0.4 0.6 0.8 1.0 %.O 0.2 04 0.6 0.8 1.0
Ratio of Lower bound to mean capacity Ratio of Lower bound to mean capacity
(a) Case A (with prior information) (b) Case B (without prior information)

Figure 4. Effect of loading on the reliability index. The line styles mean simulation cases shown in Table 2.
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Figure 5. Application graph of FS and lower bound

Lastly, a total of six cases were simulated by changing the factor of safety (FS) from 1.5 to 3.0 (Table 2). FS
is defined as the ratio of the expected ultimate capacity to the expected load at the design stage. The reliability
index was numerically calculated using Eq. 5 by dividing the capacity and the load normalized by the mean load
into 1000 parts between 0 and 5. Moreover, it was also assumed that the load follows an ordinary lognormal
distribution and the bias=1.0 and the COVs=0.1 with reference to dead load in the previous works, such as
Phoon and Kulhawy (1999).

Figure 4 illustrates the effect of the loading level on the reliability index. As the lower bound increases, the
reliability index increases monotonically, which is characteristically similar to the results reported by Najjar and
Gilbert (2009).

Case A2 (dashed line) indicates the effect of only a decrease of COVq and A3 (dotted line) indicates that of
lower bound. A2 conformed with Al at small lower bound and small FS. Initially, A3 was much smaller than
AT; however, as lower bound increases, A3 approached Al asymptotically.

Case B has a smaller f§ than Case A at small lower bound. However, Case B approaches Case A at large
lower bound. It can be stated that even in the case of no prior information, the reliability is equivalent to that
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with prior information at a certain load. In addition, the difference between B1 and B2 at FS=2.0 (red lines)
appears to be larger than that between Al and A2.

From the above, it can be stated that Cases 2 and 3 underestimate S in all conditions, and that TP lognormal
model is effective, particularly when FS is large, the load is high, and there is no prior information. Noticeably, S
of Case A3 (FS=1.5) becomes smaller when the lower bound is in the range of 0.2 to 0.5. It is primarily because
the peak of the posterior distribution becomes smaller due to the strong assumption that the expected capacity is
the same as that of the prior information and the condition with small FS. The validity of this assumption should
be re-examined in the future.

Furthermore, the relationship between FS and the maximum load required to obtain a certain target
reliability index is illustrated in Figure 5, based on cases Al and B1. Note that the x-axis is normalized by the
load instead of the capacity. For example, if the maximum load is 0.6 times the expected design load and the
target reliability index is 3.0, then the FS is required to be 2.6.

In general, the cost of static load tests is approximately proportional to the maximum load carried, and the
cost of construction is proportional to the FS. The maximum load and FS are inversely related to achieve a target
reliability index. Therefore, load and FS are tradeoffs that should be considered simultaneously to minimize the
total cost. Compared with Figure 5a, the slopes of y to x are more prominent in Figure 5b. Thus, it can be
inferred that load tests become a more cost-effective tool in the absence of prior information.

5 Conclusions

In this study, the modeling error of the extrapolation of the load-settlement curve was investigated based on the
database of pile loading tests to promote to use the piling data.

® TP lognormal with the maximum load as lower bound fitted well with the results of extrapolated ultimate
capacity.

® The maximum load leads to both an increase in the lower bound and a decrease in COV; the former
increases the reliability index, particularly at a large lower bound; the latter increases the reliability index at a
small lower bound and small FS.

® The application graph of FS and maximum load to achieve the target reliability index has been developed.
In particular, in the absence of prior information, the selection of an appropriate FS and maximum load may
minimize the construction cost.
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