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Abstract: Spatial variability of geotechnical properties within multiple soil layers plays an essential role in geotechnical
design or analysis, especially in probability-based analysis for geo-structures (e.g., slopes, tunnels, piles). This is often
determined via laboratory methods using samples from drilled boreholes, alternatively in-situ testing methods, such as cone
penetration test (CPT). Note that CPT has been widely used in recent decades, because it is fast, inexpensive, repeatable, and
can obtain almost continuous soil response data when its cone is pushed into the ground. Because of time and/or technical
constraints, the number of CPT in a specific site is often small. Besides, note that subsurface conditions are often
inhomogeneous, and CPT at different locations may reveal different spatial variability of geotechnical properties in terms of
accuracy. In this case, it is of great interest, but of great difficulty, to determine the optimal locations for CPT soundings such
that as accurate as possible information on multi-layer geotechnical properties can be obtained. This is often encountered
during the multi-stage geotechnical site characterization, and additional CPT locations are often needed in later site
characterization. This paper presents an efficient Bayesian compressive sensing method for addressing this issue, which
consists of two components: 1) information entropy for determination of optimal CPT locations, and 2) kronecker product to
improve its computational efficiency given almost continuous CPT data. The method is demonstrated using numerical
datasets. The results indicate that the locations determined by the presented method are effective and can properly
characterize the spatial variability of multiple soil layers.

Keywords: Bayesian methods; non-parametric methods; data-driven method; site investigation optimization; non-stationary
spatial variability

1 Introduction

Characterization of spatial variability of soil properties, i.e. variations of soil properties with depth and
horizontal directions (e.g., Figure 1la), is one of important tasks to geotechnical site investigation. This is
attributed to the fact that spatial variability of soil properties is a crucial factor affecting the performance of geo-
structures, such as slopes (e.g., Griffiths et al. 2009; Liu et al. 2019) and foundations (e.g., Fenton and Griffiths
2002; Naghibi and Fenton 2017). This is often determined through laboratory tests or in-situ method, e.g., cone
penetration test (CPT). Note that CPT is one of the most commonly used in-situ procedures for measuring the
spatial variability of geotechnical parameters during site investigation, especially the spatial variability along the
depth direction. In comparison with other in-situ methods, CPT can obtain almost continuous soil response data,
i.e., soil resistance g and sleeve friction f, as its cone is pressed into the ground at a steady rate.

Although CPT offers numerous data points along the depth direction, the number of horizontal CPT
soundings is typically small. Because subsurface site conditions are often inhomogeneous, different CPT
locations may result in varying volumes of information gathered during site characterization (e.g., Jiang et al.
2017; Pinheiro et al. 2017; Yang et al. 2019). This raises the challenge of how to choose appropriate locations
for a certain number of additional CPT soundings in order to acquire as much information as possible on the
spatial variability of underlying soils. This is often encountered during the multi-stage geotechnical site
characterization, and additional CPT locations are often needed in later site characterization. Although several
methods have been proposed in literature, they become less applicable when the site of interest is of multilayer
and nonstationary. For example, Jiang et al. (2017) recently proposed a method to identify the optimal borehole
locations for slope stability assessment by combining information theory and Bayesian updating methods; Yang
et al. (2019) performed similar work by utilizing hypothesis testing and/or conditional random field theory. Note
that the above-mentioned approaches perform well in finding the ideal drilling locations that contribute the most
to slope reliability analysis, they cannot be utilized directly for site characterization. In addition, it is important to
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note that a reliable study or design of a geo-structure at a particular site is only possible after a geotechnical site
assessment at that site (e.g., Zhao and Wang 2019). In this research, determining appropriate locations for CPT
soundings may not be related to the engineering reaction of a geotechnical construction.

This paper presents a novel method for determining the optimal locations for additional CPT soundings,
especially when a limited number of CPT soundings are available during preliminary site investigation. The
suggested method systematically integrates information entropy with data-driven and non-parametric Bayesian
compressive sensing (BCS). Note that, despite the fact that BCS has been developed to determine the optimal
sampling locations for one-dimensional (1D) problems (Zhao and Wang 2019), the 1D method cannot be used
directly for 2D problems due to the BCS formulation and computational efficiency in Zhao and Wang (2019)
when dealing with a large number of data points for CPT data. After this introduction, the information entropy is
briefly discussed in this work, followed by the development of proposed method for additional CPT soundings in
a later stage of site investigation.
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Figure 1. (a) An example of 2D spatially varying CPT tip resistance g. data (b) Estimated 2D g. profile from the six sets
of ¢. data; (c) Quantified uncertainty in terms of standard deviation; and (d)

2 Introduction to information entropy

Information entropy was introduced by Claude Shannon in 1948 as part of his communication theory (e.g.,
Shannon 1948). It is used to express the average quantity of information associated with a random process,
which may be understood as a collection of numerous random variables. Intuitively, "entropy" implies
uncertainty associated with the process: if the process is highly uncertain (i.e., random variables exhibit
significantly big variability), it has a high information entropy; and if it is not uncertain, it has a low information
entropy. If all random variables in a process are well-learned through measurement and there is no uncertainty
associated with the process, the information entropy of the process approaches zero. The information entropy of
a collection of random variables is defined as follows:
H(X) ==[ p(X) Inp(X)1aX (M
where H(X) and p(X) respectively denote the information entropy and probability density function (PDF) of X,
respectively.

As Eq. (1) provides a quantitative measure of information, it is utilized to facilitate quantitative information
learning for various applications. MacKay (1992) offered a way for adaptively selecting new data points that
contribute most to the desired regression analysis; Ji et al. (2008) established a method for adaptively
determining the ideal additional measurement in image recovery utilizing BCS and information entropy.
Information entropy was also incorporated into global optimization algorithms to facilitate the search for
objective function maxima and minima (e.g., Hennig and Schuler 2012). In spite of the complex mathematics
involved in these applications, the fundamental concept was to seek out the new measurement that could
potentially yield the most information gain for the challenge at hand.

Let H(Xuew) denote the new information entropy following the observation of new measurements. The data
acquired from new measurements is then expressed as:
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AzH(X)_H(Xnew) (2)

Note that as new measurements are observed, the process’s uncertainty is generally reduced, so H(Xnew)<H(X)
and A> 0. For geographic coordinate problems (e.g., the characterization of spatial variability in geotechnical
engineering), different measurement locations may result in varying information gain. In order to gather as much
information as possible from the new measurements, it is necessary to sample them at locations that maximize
Eq. (2). Consequently, the information theory based on Egs. (1) and (2) can be utilized to determine the optimal
measurement locations when describing the spatial variability of soil parameters using CPT soundings, as
detailed in the next section.

3 Optimal locations for additional CPT soundings

In this section, the limited number (e.g., 7») of pre-existing CPT g. data are utilized to find the ideal locations for
additional CPT soundings, in order to further characterizing the spatial variability of the multilayer geotechnical
properties using information entropy. As indicated by Eq. (1), the PDF of two dimensional (2D) spatially varying
property by CPT, denoted as F, i.e., p(F) is required for computing the information entropy, which may be
determined using the Bayesian compressive sensing (BCS) method with 7, sets of observed CPT (e.g., gc) data Y
as input.

3.1 Efficient Bayesian compressive sensing for interpolation of 2D CPT data

Bayesian compressive sensing (BCS) is a novel sampling technique for reconstructing spatially or temporally
changing signals from far fewer data than those required by the Nyquist-Shannon theorem (e.g., Candés and
Wakin 2008; Ji et al. 2008). It has been utilized to describe the spatial variability of geotechnical parameters in
1D, 2D, and 3D scenarios (e.g., Wang and Zhao 2017; Zhao et al. 2018; Zhao and Wang 2020). In these
applications, the signal decomposition idea that any geographically or temporally variable quantity, such as the
2D g. data in Figure la, can be seen as a weighted sum of 2D basis functions is utilized. Let matrix F with
dimensions N1xNz represent the 2D ¢. data to be described, and F is then expressed as

N, N, N

F=B"Q®BY) => >0, b)) =D B " 3)

i=1 j=1 t=1

where B%D and BIZD are two 1D orthonormal basis matrices (e.g., discrete cosine matrix) with dimensions

NixN1 and N2xN2, respectively; and N = NixNa. As demonstrated in mathematical literature (e.g., Salomon
2007), the majority of w. elements are near to zero, with the exception of a limited number of non-trivial
elements with notably large size. Once the non-trivial «: is accurately predicted, 2D ¢. data with a high
resolution (e.g., Figure 1a) can be produced from a small number of CPT records (i.e., Y) from a preliminary site
study. For derivation convenience, transpose of F, i.e., FT is rewritten as a vector using Kronecker product which
has been defined in Section 2 and decomposed as below:

vec(F') = (B]” @ B yvec(Q") = (B]” @ BY ) &)

where w*P=vec(Q") is a column vector denoting w: (1 = 1, 2,..., N). As PDF of F is required when employing

information entropy (see Eq. (1)), a Bayesian estimation approach is used (e.g., Zhao et al., 2020), from which

PDF of F can be obtained using Eq (4). Using the approach presented by Zhao et al. (2020), the posterior PDF of
2D is derived to follow a Gaussian distribution, with mean and covariance matrix expressed as:

Hop = (ﬂclbw sttt ﬂgzln B
1
COV(bZD 0 (5)
Covd)z[) = : ’ . :
0 COV(;\;'D

where both '”fa“’ and COVC’%)ZD are functions of measurement data (i.e., available CPT data from preliminary

site investigation). Due to the introduction of kronecker product, Eq. (5) can be computed in an efficient manner.
Readers of interest can be referred to Zhao and Wang (2020) and Zhao et al. (2020) for more details.

As F is a weighted sum of multivariate Gaussian random variables, it is easy to derive that the estimated 2D
CPT dataset F follows a multivariate Gaussian distribution too (e.g., Ang and Tang 2007). The mean and
covariance matrix for F, or equivalently vec(F7), is represented as follows (e.g., Zhao et al., 2020):
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'u"‘fc(ﬁT) - (BiD ®B]2D)'uvec(9T) - (B}D ®B12D ):ua‘;zD (6)
COVvec(f?T) = (B%D ® BIZD )COV(Z)ZD (B%D ® BlzD )T

) Tepresents the estimate of F, while diagonal components of COV|

- indicate the estimated variance
ec(F')

H vec(ﬁT
of F. The entropy associated with F can then be estimated using Eq. (1), and the optimal locations for subsequent
CPT soundings can be found appropriately, as demonstrated in the following subsection. It is important to note
that the suggested BCS approach is data-driven and does not require a stationary assumption during calculation.
The BCS approach can therefore be used to estimate spatially variable g. values in multiple soil layers.

3.2 Optimal location for one additional CPT sounding ) )
According to Eq. (1) and multivariate Gaussian PDF of F (or vec(F")), information entropy H(vec(FT)) is
expressed as:

H(vec(F")) = In[det(COV, .

where the term “N[1+In(2m)]” is a constant term, which is independent of CPT sounding locations. Subsequently,
combining Egs. (6) and (7), rearranging the terms, lead to
N,
H(vec(FT))=-1/ 22111 det[A] A,z + D% ]+ N[1+In(27)]/ 2 (®)
i=1

D1/ 2+ N[1+In(27)]/ 2 (7)

A, = ‘I’BlzD . Note that transpose of ¥, i.e., W' reflects locations of 5 sets of the measured ¢. data along the x
direction. DY (i =1, 2, ..., N1) records the i-th N intermediate unknown variables, which are determined in the
BCS approach in previous subsection. If a new CPT were to be conducted and related g. data were to be
gathered along the depth, the 2D ¢. would be updated as l},};w , and new information entropy is expressed as

Nl
H(vec(FL ) =—1/ 22 In det[(A5) T (AS)r" + D1+ N[1+In(27)]/ 2 9)
i=1

*99

“r” and “D;*” are the new 7 and D given a new set of g. data are obtained. Because the additional CPT has
not been carried out and corresponding g. data are unknown, “z” and “D;*” are taken as 7 = 7 and D,* = D¥
respectively hereafter.

It is worth pointing out that each row of BlzD corresponds to a CPT sounding location along the x> direction.

As a result, when one additional CPT sounding is determined, A’;ew shall be updated by appending a new row
r, of BY to As ie, A" =[A,,n]" . In this case, (A2)TAZ"7z+D? =(ATA,z+D%)+() rr .
Following matrix determinant lemma (e.g., Brookes 2005), det[(A]A,z+D%)+(r5) rz] is equal to

det{(ATA, 7+ D)1+ 7 (AJA, 7 +D?¥) ' (1)) 1} . With these expressions, information entropy before and
after a new CPT sounding may be derived as below

Nl
A = Hvec(F")] - H[vec(Fy,)]=1/2) n[1+75COV,,, (17)"] (10)
i=1

According to the discussion mentioned above, the optimal location for the additional CPT sounding is the
one that maximizes A. Eq. (10) further shows that maximization of A is equivalent to the search for the row of

Nl
B 7 (e, ) that maximizes Z In[1+ rrZICOVC’Z)ZD (n)']  or its exponential  form
i1

NI

(N T Z:[rz1 COV;ZD (r21 )T]j . ¥ is omitted because it is a constant. Besides, because 7 is a constant for all

i=1

rows of B} and exponential function is monotonically increasing, the abovementioned problem further reduces
N,

to searching for the row of B'; that maximizes Z[rZICOVZaZD (r21 )T], which surprisingly coincides with the
i=1

summation of the estimated variance of a CPT sounding along the x2 direction (see Zhao et al. 2021 for a

detailed proof). Such argument means that the optimal location for the additional CPT sounding along the x2

direction is the one with the largest summation of variance, which intuitively make sense because the largest
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variance indicates largest uncertainty at that location (e.g., Zhao and Wang 2019). Once the CPT sounding is
carried out at the determined optimal location, the maximum information gain about the spatial variability is
obtained, and the maximum uncertainty reduction on the estimated 2D g. data is achieved.

3.3 Optimal location for multiple additional CPT sounding

In this subsection, the optimal locations for multiple (e.g., 7.) additional CPT soundings are determined using
the efficient BCS, information entropy and the 75 sets of pre-existing g data Y. Suppose that n,» additional CPT
soundings are required in the multi-stage geotechnical site characterization. In this case, matrix Az shall be

updated to A% by appending 7, rows of B2 to Az, and A" =[A,,R%" ], where R}" denotes the 7, rows of

B>. Following a similar procedure, the information entropy of E_ , is obtained and difference of information
entropy between and after n» sets of additional CPT soundings are derived as below

n

Nl
A= H(vec(F")) - H(vec(Fy,)) =1/2) Indet[I
i=1

_+7R}"COV.,, (R")'] (11)

where I, is an identity matrix with a dimension of n»* nn. Therefore, the seeking the optimal locations of the

nm

nm additional CPT soundings is equivalent to seeking a combination of n» rows of Bz (i.e., RY)) that maximize
Eq. (11), which can be readily formulated as an optimization problem and addressed via a built-in optimization
function in some commercial software, e.g., “ga” function in MATLAB. A careful examination of Eq. (11)
shows that it reduced exactly to Eq. (10) when 7 is reduced to nm = 1.

4 TIllustrative examples

In this section, a set of two-layer 2D CPT tip resistance g. data is simulated for demonstration purpose, as shown
in Figure 1a. The 2D ¢. data are distributed over a vertical cross-section which is 100m long and 10m deep, with
a resolution of 0.5m and 0.02m, respectively along the x2 and x1 direction (see Figure 1a). The two-layer 2D g.
data is simulated from a Gaussian simulator with a linearly varying mean, e.g., 11=0.05x1+10 (MPa) in the first
layer and a constant mean of x> = 22.5 MPa in the second layer. The variances for g. in these two layers are o,
=4.0 and o, = MPa, respectively. Besides, an anisotropic exponential correlation structure is adopted when
simulating the 2D g. data:

Ax, Ax
p =exp(-2 /—1+—2) (k=12) (12)
ﬂl,k ﬂ?,k

where Ai,1 = 1.0m and A2;1 = 50.0 in the first layer; while A12 = 1.0m and A22 = 30.0m in the second layer.
Suppose that n, = 6 sets of CPT soundings were carried out in the preliminary site investigation and
corresponding ¢. data are recorded. With the discussions mentioned above, these data can be effectively utilized
to determine the optimal locations for additional CPT soundings to efficiently characterize the spatial variability
of geotechnical properties.

In this subsection, the optimal location for the additional CPT sounding is determined by the presented
method together with the n, = 6 sets of pre-existing CPT data. As discussed in detail previously, the optimal
location is the x2 location with the largest summation of variances estimated from the efficient BCS method. For
the current example with 7= 6 sets of g. data, 2D CPT data can be obtained using the presented BCS method, as
shown in Figure 1b&lc. With the estimated standard deviation in Figure lc, the optimal location for one
additional CPT soundings is shown in Figure 1d by a dashed line, which is located at x> = 50.0m.

Table 1 Performance of the optimal locations for 7, (= 1, 2, 3, 4 and 6) additional CPT soundings from the proposed
method and that of randomly selected locations for 1000 times in interpreting 2D ¢. data in terms of mean absolute error

135

(MAE)
Number of MAE with optimal Statistics of the MAEs with 1000 sets of #,, random locations
additional CPT locations from the Minima 5t percentile 25" percentile
soundings proposed method
Ny =1 0.98 0.97 0.98 0.99
Ny =2 0.91 0.86 0.94 1.02
M =3 0.84 0.79 0.89 0.96
Ny =4 0.77 0.77 0.86 0.93
) 0.72 0.73 0.80 0.86

To explore the effectiveness of the location determined, CPT values at this location are retrieved from the
underlying true 2D ¢. data and used with the n, = 6 sets of pre-existing g. data as input to the BCS method to
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estimate probabilistically the underlying 2D ¢q. data. With the results obtained, the mean absolute error (MAE)
between the underlying true 2D qc data and the estimated one from the presented method is obtained, which is
computed as MAE = 0.98, which is smaller when comparing the MAE = 1.05 in the n, = 6 scenario (the results
in the previous paragraph). For a systematical investigation, effectiveness of the additional g. data at x2 = 50.0m
is also compared to that of g. data at other 201-7 = 194 x2 locations. g. data at each of the 194 x locations with
the n» = 6 pre-existing ¢. data (i.e., the dashed lines in Figure 1d) are utilized together as input to the efficient
BCS approach to infer the 2D ¢. data in this two-layer soil, followed by calculation of MAE. 194 x2 locations
therefore lead to 194 MAEs in total, using which the minima, 5th and 25th percentiles are determined and
described in Table 1. Table 1 also shows MAE = 0.98 corresponding to the n, = 7 scenario with g. data at the
optimal location, i.e., x2 = 50.0m. Table 1 shows that MAE = 0.98 is equivalent to the minima (i.e., 0.97) and the
Sth percentile (i.e., 0.98) of the 194 MAESs, showing again that the optimal location (i.e., x2 = 50.0m) identified
by the proposed method is effective in defining the spatial variability of soil properties.

Similar procedure is applied to determine the optimal locations for multiple (e.g., n» = 2, 3, 4, 6) additional
CPT soundings, and their performance is also examined in terms of MAE and the performance of 1000 times of
randomly selection of CPT locations, as summarized in Table 1. Table 1 shows that the MAE corresponding to
the optimal locations determined from the presented method is very close to the minima of the 1000 random
experiments, demonstrating that the presented method is very effective in determining optimal locations for
additional CPT soundings to efficiently characterize the spatially varying subsurface soils.

5 Conclusions

This paper presented a novel approach to determine the optimal locations for additional CPT soundings by
effectively utilizing the information from a limited number of CPT data in the preliminary site investigation. The
presented approach is developed based on the information entropy theory and non-parametric Bayesian
compressive sensing (BCS) approach. Results show that the optimal location for one CPT sounding is the one
with the largest summation of variances from the BCS. Numerical examples were taken to carefully evaluate the
presented approach, which indicated (1) that the presented approach performs well in determining optimal
locations for additional CPT soundings, and (2) that the BCS approach is applicable to characterize non-
stationary soil property within multilayers due to its data-driven characteristics.
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