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Abstract: Natural geomaterials are affected by many spatially varying factors during complex geological formation process
and exhibit spatial variability and heterogeneity in three-dimensional (3D) space. Real geotechnical structures always interact
with geomaterials with 3D spatial variability. However, in engineering practice, due to the limitation of investigation
borehole number and the complex nature of geomaterials properties, it is challenging to fully characterize the 3D spatial
variability. This challenge can be exacerbated when the layout of sparse boreholes has irregular spacing and the concerned
spatial variability shows highly non-linear non-stationary features. Even the commonly used conventional geostatistical tools
can hardly tackle this situation because the associated parameters, e.g., 3D non-stationary trend function, correlation
structures along three different directions, are difficult to determine in the presence of limited borehole data. This paper aims
to present a novel Bayesian supervised learning (BSL) method to resolve this challenge. Characterization of 3D spatial
variability is formulated as a supervised learning problem and is solved under Bayesian framework. Interpretation uncertainty
is quantified automatically. The BSL is non-parametric and data-driven. It bypasses the trend function determination and
correlation structures estimation processes. The performance of BSL can evolve with the borehole number. The BSL method
is illustrated using a highly non-linear non-stationary and anisotropic example. The results show the BSL can properly learn
the spatial variability from limited borehole data and quantify associated uncertainty. By leveraging the sparsity-enhanced
framework of BSL, the computational effort in 3D is feasible for personal computer.
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1 Introduction

Geomaterials are affected by many spatially varying factors during complex geological formation process and
exhibit spatial variability and heterogeneity in three-dimensional (3D) space (e.g., Baecher and Christian 2003).
Real geotechnical structures (e.g., engineered slopes, excavation, foundation structures) always interact with
geomaterials with 3D spatial variability, although classical geotechnical analyses are often simplified to 1D or
2D. Accurate characterization of the 3D spatial variability is therefore required to promote realistic geotechnical
analyses considering 3D spatial variability (e.g., Xiao et al. 2018; Zhao and Wang 2021). The recent trend of
digital transformation in geotechnical engineering also encourages the development of digital twins of 3D spatial
variability in terms of 3D geological models (e.g., Phoon et al. 2021). However, in practice, due to the limitation
of investigation borehole number and the complex nature of geomaterials properties, it is often challenging to
fully characterize the 3D spatial variability (e.g., Zhao and Wang 2020&2021). Classical geostatistical tools can
hardly tackle this situation because the associated geostatistical parameters, e.g., 3D trend function and
correlation structures along three different directions, are difficult to determine in the presence of limited
boreholes data (e.g., Wang et al. 2019&2021). In addition, the limitation of borehole data further introduces
significant statistical uncertainty. How to properly evaluate the statistical uncertainty of 3D spatial variability
remains difficult. These challenges can be even exacerbated when the layout of sparse boreholes has irregular
spacing and the concerned spatial variability shows highly non-linear and anisotropic features.

Recently, emerging machine learning (ML) algorithms have demonstrated great potential in modelling
geotechnical spatial variability (e.g., Ching et al. 2020; Hu et al. 2020; Shi and Wang 2021). Generally, ML
algorithms require extensive amount of measurement data either from boreholes database or high-resolution
geological images to reliably train a model, which is difficult to implement at local specific site where data
available are limited. Moreover, these models can often suffer from growing computational efforts in 3D. It is
therefore imperative to develop an efficient model to cater site-specific 3D spatial variability modelling from
limited data. To this end, this paper presents a novel ML algorithm called Bayesian supervised learning (BSL) to
characterize 3D spatial variability from limited borehole data with consideration of statistical uncertainty. In
BSL, characterization of 3D spatial variability is formulated as a supervised learning problem and is solved
under Bayesian framework. Interpretation uncertainty is quantified automatically. The BSL is non-parametric
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and data-driven. It bypasses the complex 3D trend function determination and 3D correlation structures
estimation processes. The performance of BSL can evolve with the borehole number.

After this Introduction, the proposed BSL method including mathematical formulation is introduced in
Section 2. Then a highly non-linear 3D non-stationary example is provided in Section 3 to illustrate the method.
Section 4 discussed the effect of measurement data amount.

2 Bayesian supervised learning of 3D spatial variability

2.1 Formulation of 3D spatial variability

How to efficiently formulate the 3D spatial variability is a remarkable question for ML in geotechnical
engineering. In this study, a sparsity-enhanced mathematical formulation of 3D spatial variability is proposed.
3D spatial variability is digitized as a 3D data array F with a dimension of N, x N, x N, and expressed as a

weighted summation of 3D basis functions with the same shape (e.g., Zhao and Wang 2020; Wang et al. 2021):
N

F=> o"B” 6]
t=1

in which N =N, xN, xN,; @” is the weight coefficient for 3D basis function B;”. When a set of appropriate
basis functions is adopted (e.g., discrete cosine transform (DCT) function), the distribution of N weight
coefficients will be sparse. In other words, most weight coefficients @’” are negligible except a few non-trivial

ones with significant magnitude. Characterization of 3D spatial variability with a dimension of N, x N, x N, is

reduced to identification and estimation of those limited non-trivial weight coefficients. To achieve this sparsity
feature, the 3D basis function B’” can be constructed appropriately using three sets of DCT basis functions.

Each B’” essentially is an outer product of three 1D DCT basis functions along three different directions (e.g.,
Zhao and Wang 2020&2021):

B =B, =5 ®b ®b] @

in which “#” is the simplified 1D index of 3D index (i, j, k); B>”

.« 1s the 3D basis function with frequencies

[T I

components “i”, “”, and “k” along three directions, respectively. b/, bf , and b are corresponding 1D basis

functions, with length N,, N,, and N,, respectively. The 1D basis functions can be readily constructed using

built-in function in commercial software, such as “dctmtx” in MATLAB, or “dct” function in Python “scipy”
library. The above settings enable the high-resolution 3D spatial variability to be sparse in the space of DCT
weight coefficients. Therefore, the 3D spatial variability F can be approximated if those non-trivial weight
coefficients can be approximated from limited investigation data. In addition, the complex 3D trend function is
automatically incorporated in the framework of Eq. (1). Detrending operation of 3D spatial variability as
required in classical geostatistical tools is therefore bypassed.

2.2 Bayesian supervised learning from limited data
To account for the uncertainty associated with the 3D spatial variability interpretation based on limited data, a
Bayesian framework is used to solve the non-trivial weight coefficients in Eq. (1). The posterior distribution of

approximated non-trivial coefficients vector @*” given limited data y*” is expressed as (e.g., Wang et al.
2021):
p(yw |aA)3D)p(aA)3D)

p(& 1y")= ) 3)

in which the @’ is the approximated non-trivial coefficients vector and y*” is the limited data vector with

length M (e.g., M<<N); p( y’ |a33D) is a Gaussian likelihood function, i.e., the plausibility of observing y*”
with @” ; p(d)w ) is a Gaussian prior distribution of @”; p( y’ ) is a normalizing constant which ensures

the integration of the posterior distribution to be unity. The relationship between @’” and y*” is formulated in
accordance with the residual between them:

YO = AP 4 ©
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Figure 1. (a) Simulated 3D non-stationary spatial variability of ¢; values; (b) selected cross sections

in which A*” is a matrix with each column representing the reshaped sub-array of 3D basis function; & is the

error function. To learn the posterior distribution, Markov chain Monte Carlo simulation is adopted to
approximate the posterior directly and efficiently. Extensive random samples of @’” can be simulated by

iterations (e.g., Zhao and Wang 2020). After substituting the @*” samples to Eq. (1), random samples of the

concerned 3D spatial variability can be reconstructed readily. The statistics (e.g., the average and standard
deviation) of the approximated 3D spatial variability can then be calculated. The average of the samples is
interpreted as the best estimate of the 3D spatial variability given limited data. The statistical uncertainty can be
quantified by the standard deviation.

3 3D non-stationary example

To illustrate the application of the proposed 3D BSL framework, a set of simulated cone tip resistance data g: of
penetration test is provided in this Section. This example describes the 3D spatial variability of g: for soils mass
with a length of 10m, a width of 10m, and a thickness of Sm. The example is simulated by combining a zero-
mean 3D stationary random field with a 3D trend function:

0, (X,Y,Z)=-0.4x(X~5)" ~0.4x(Y-5)" —(2-2.5)" +40+¢(X,Y,Z) (MPa) (6)

in which “X” and “Y” are two horizontal coordinates both with ranges [0.1m, 10m]; “Z” is the vertical
coordinate with range [0.1m, Sm]. The zero-mean 3D Gaussian random field & (X, Y,Z) has unit variance and

contains an exponential autocovariance structure with correlation lengths 2m, 2m, and 0.4m along three
directions, respectively. The spatial resolution of this example is set to 0.1m along all directions, leading to a
100%100x50 3D array. One realization of this example is color-coded and shown in the Figure 1(a) and will be
used for illustration. It shows that the gt values are smaller around all eight corners than those in the center. This
pattern can be observed in three color-coded cross-sections shown in Figure 1(b). To mimic the limited data
situations, grid sampling with 6 data points along Z direction and 5 data points along both X and Y directions is
implemented. In total 5x5%6=150 (e.g., a sampling ratio of 150/500000=0.03%) sampled data points, as shown
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by black dots in Figure 1(a), are treated as input to BSL to learn the 3D spatial variability of g:. Note that the
sampling intervals are larger at the middle part along all three dimensions than those around the corners.
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Figure 2. (a) BSL best estimate of 3D cube; (b) BSL best estimate cross sections
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Figure 3. (a) BSL standard deviation; (b) Absolute residuals between BSL best estimate and original data
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Figure 4. (a) BSL performance at selected vertical profiles (X=3m, Y=4m): (a) M=5x5x%6; (b) M=20%20%20
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Figure 5. (a) BSL performance at selected horizontal profiles (Y=3.5m, Z=4m): (a) M=5x5x%6; (b) M=20%20%20

The best estimate results are illustrated in Figure 2. Figures 2(a) and 2(b) are the best estimate cube and best
estimate cross sections, respectively. Note that the best estimate result has a pattern similar to the original data in
Figure 1 with the complex 3D trend function well preserved. Figures 3(a) and 3(b) compares the standard
deviation cube and the absolute residual cube. Absolute residuals are generally smaller than standard deviation,
suggesting the statistical uncertainty is properly quantified. To clearly examine the method, performances at two
1D testing profiles are extracted. The locations of these two unsampled profiles are shown in Figure 1(a) by blue
squares. Profile at (X=3m, Y=4m) is a vertical profile, and profile at (Y=3.5m, Z=4m) is a horizontal profile.
The learning results of these two profiles are shown in Figures 4(a) and 5(a), respectively. The original profile
and the BSL best estimate are denoted by black solid lines, and red dashed lines, respectively. Two blue dotted
lines depict the interval of best estimate + one standard deviation. The profile comparison also suggests the non-
stationary trend is well characterized without imposing an assumed trend function. The statistical uncertainty is
properly quantified. The performance of the proposed 3D BSL is reasonable, even a very low sampling ratio is
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adopted. The learning was performed using a PC with Intel Core 17-4790, 3.60 GHz CPU processor and 16 GB
RAM, and it took about 4 seconds.

4  Sensitivity study

To investigate the effect of measurement data amount on the BSL method, an additional measurement scenario is
discussed for the 3D non-stationary g: data example. In this scenario, grid sampling with 20 data points along
three directions are sampled (i.e., M=20%x20x%20). The sampling ratio (i.e., 8000/500000) increases to 1.6%. Due
to the page limit, the comparison between 3D cubes and cross sections are not provided here. The performances
at the two selected testing profiles are shown in the Figures 4(b) and 5(b), respectively. For both the vertical and
horizontal profiles, the best estimate profiles converge to the original ones. The quantified uncertainty reduces to
almost zeros. The results indicate that the BSL framework is data-driven and can evolve with the measurement
data amount.

5 Conclusions

This paper presents a non-parametric and data-driven Bayesian supervised learning (BSL) framework for
probabilistic characterization of 3D non-stationary geotechnical spatial variability from limited data. The
mathematical formulation of BSL is firstly introduced. A simulated cone penetration test data example is then
provided to illustrate the method. Results suggest the BSL performs well. The non-stationary 3D trend function
is well characterized from limited data without imposing an assumed parametric trend function. The statistical
uncertainty is also properly quantified. BSL performances are further evaluated at one vertical profile and one
horizontal profile where measurement data are not available. The results also suggest the BSL performs well.
Sensitivity study also shows the BSL can converge to reality when measurement data amount increases. The
computational effort of BSL framework is feasible for personal computers due to its sparsity-enhanced feature.
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