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Abstract:For geotechnical professionals, the words “risk” and “probability” should not be confused, since risk is the
probability of design failure weighted by its consequences. An obvious implication of this definition is that if the
consequences of a failure are serious in terms of loss of life and/or cost to infrastructure, the allowable or target probability of
failure for design must be commensurately low. Conversely, if the consequences of failure are relatively less important, a
higher allowable or target probability for design can be allowed. Risk is therefore inextricably linked to quantitative
probability estimates. Geotechnical engineers have a toolbox of methods available for estimating probability, ranging from
hand calculation methods such as the First Order Second Moment (FOSM) method, to mildly computational method such as
the First Order Reliability Method (FORM) to intensively computational numerical methods such as the Random Finite
Element Method (RFEM). This paper reviews these methods, offers an alternative approach to FORM, and highlights some
of their characteristics that can be taken into account when applying them to probabilistic geotechnical applications.
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1 Introduction

In geotechnical design, Risk (R) is defined as the Probability of Failure (P)weighted by the Consequences of

F ailure(C). The Probability of Failure is meant here in its broadest sense, ranging from actual failure (often

catastrophic), for example of a dam or levee due to a flood or earthquake, to a more modest design
(performance) failure,e.g. excessive differential settlement of a foundation due to settlement or swelling. Writing
the above definition as

R=PxC (1)
and taking logs of both sides, we get
logP=-logR+1logC 2

which implies a linear relationship between log Rand log P.
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Figure 1. The Tonen FN Chart (T.W. Lambe & Associates 1982)

The implications of Eq. (2) were demonstrated graphically by Greg Baecher, with the collaboration of Allen
Marr, while working on a seismic risk project involving a tank farm for the Tonen Oil Company of Japan (T.W.
Lambe & Associates 1982). The resulting Figure 1 was never published in the academic press, but was presented
as a personal communication by Whitman (1984), and later published in the text by Baecher and Christian
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(2003)with further discussion by Baecher (2013). It has since been mimicked by numerous agencies involved
with geotechnical risk

Consequences of failure are entirely site specific. In a deterministic analysis, the two failing slopes shown
in Figure 2 have the same FS =1, but quite different consequences of failure. In a risk analysis of the same two
slopes, it would be justified in allowing a higher annual probability of failure of the slope on the left than for the
slope to the right.

W0 2

Figure 2. Two slopes with the same factor of safety but quite different consequences of failure

Geotechnical engineers have a choice of methods for estimating geotechnical probability, e.g.
1) Event Trees developed by Expert Panels
2) Point Estimate Methods (PEM)
3) First Order Methods
1. First Order Second Moment (FOSM) Method
ii. First Order Reliability Method (FORM)
4) Monte-Carlo Methods
i. Single Random Variable (SRV) substitution.
ii. Random Finite Element Method (RFEM)

A detailed description of most of these established methods can be found in the text by Baecher and
Christian (2003) and Ang and Tang (2007). The relatively recent RFEM, developed by Griffiths and Fenton
(1993), Fenton and Griffiths (1993), is now widely accepted as the state-of-the-art in probabilistic geotechnical
analysis, and used by numerous research groups worldwide with a large and rapidly growing bibliography.
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Figure 3(a). The traditional deterministic approach to a bearing capacity analysis
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Figure 3(b). The probabilistic approach to a bearing capacity analysis

In the deterministic approach shown in Figure 3(a), the input parameters consist of characteristic values that
typically represent pessimistic estimates of strength followed by application of the model (Terzaghi’s bearing
capacity equation in this case) and a Factor of Safety that must not fall below a design target value. If
performance or serviceability governs design,characteristic values would then represent pessimistic estimates of
soil compressibility. Although a characteristic value for a soil property represents a type of “mean”, it takes no
account of its variability.

The probabilistic approach shown in Figure 3(b) typically uses the same bearing capacity model, but instead
of characteristic values, the input involves means and standard deviations of the key strength parameters. It is
possible to include cross-correlation between parameters, and in a more advanced analysis such as that offered
by RFEM, spatial correlation. The output delivered in this case would be the mean and standard deviation of the
bearing capacity, from which probabilistic conclusions could be obtained using standard cumulative distribution
tables. In this case, the analysis would wish to ensure that the probability of failure does not exceed some design
target value. In the absence of quality data for the probabilistic input, presumptive values such as those shown in
Table 1 (e.g.Lee et al. 1983, Duncan 2000, DiMaggio 2022) can be used as a starting point for parametric studies.

Table 1. Typical values of the Coefficient of Variation (V = O'/ ,u) for various soil properties

Measured or interpreted parameter value CocHficlent (oof/u\)’ariation, ¥
Unit weight, y 3t07%
Buoyant unit weight, y, 0to 10 %
Effective stress friction angle, ¢’ 2t0 13 %
Undrained shear strength, s, 13 to 40 %
Undrained strength ratio (s./po) 5t015%
Compression index, C 10to 37 %
Preconsolidation pressure, p. 10 to 35 %
Hydraulic conductivity of saturated clay, k 68 to 90 %
Hydraulic conductivity of partially-saturated clay, k 130 to 240 %
Coefficient of consolidation, ¢y 33t0 68 %
Standard penetration blow count, N 151045 %
Electric cone penetration test, qc 5t015%
Mechanical cone penetration test, q. 15t037 %
Vane shear test undrained strength, s,yst 10t0 20 %

In the remainder of this paper, the probabilities of failure of earth pressure and slope stability applications
are estimated using First Order methods and RFEM. The aim of the discussion is to highlight some the

characteristics of the methods that should be taken into account when applying them to probabilistic geotechnical
applications.
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2 FOSM
The First Order Second Moment Method (FOSM) is suitable for hand calculation of problems such as the one

shown in Figure 3(b). Consider a “performance function” of » random variables given as f (XI,XZ,...,XH),
where the random variables have estimated means and standard deviations( Uy Oy, ),( Uy, O, ),...,( My 0y )

If the function is nonlinear, the FOSM method uses a truncated Taylor series to replace the function by a linear
function in the vicinity of the mean (e.g. Ang and Tang 2007). The required function parameters are then
estimated as:

Hy zf(,uxl,,qu,...,uX") and o, » Zn: y [%J[%]COV[XI.,XJ 3)

i=l j=1 j

The derivatives needed in Eq.(3) should be evaluated at the means and can be found either analytically or
numerically. Numerical differentiation is used if analytical differentiation is inconvenient, or if no explicit
function is available. The covariance terms are given as

Cov[X,.,Xj] = Pyx,Ox0x, “4)

where —1< p, <1 is the dimensionless correlation coefficient between random variables X, and X ;.
X :

Much has been made of the non-uniqueness of solutions given by FOSM,in that different arrangements of
the performance function can lead to different function means, standard deviations, and ultimately different
probabilistic estimates.

Consider a simple load (L) and resistance (R) analysis where R and L are uncorrelated random variables

with parameters (., ),(z,.0,).Now consider a performance function M =R—L, where M <0 implies
failure and M >0 implies safety. The quantity of interest in this problem is the probability of failure, i.e.
Py :P[M <O]. For illustration, let the load and resistance parameters be given as x4, =5, o, =2 and

Uy =8, Op = 2\/5 , and consider three arrangements of the performance function as shown in Table 2.

Table 2. Influence of function arrangement on p, in FOSM and FORM method

FOSM | FORM
Function | p f (%) | p / (%)

M=R-L 19.3 19.3
R

M=—-1 24.1 19.3
L

len(%) 18.9 19.3

The problem has been solved using both the FOSM method and FORM (Hasofer and Lind 1974). The
FOSM solution used Egs.(3), and the FORM solution used a simple spreadsheet algorithm (e.g. Low and Tang
1997, 2007, Huang and Griffiths 2011)". The table clearly shows the computed probabilities of failure by FOSM
are different in each case, even though all the functional arrangements are mathematically equivalent. It is also
noted that FORM gives the same result in all three cases.

The different probabilities in FOSM are caused by the differing gradients of the nonlinear performance
function needed byEq.(3). The goal of the analysis is to find the closest failure point to the means, where the
gradients are calculated. Only the first row in the table, namely the linear arrangement of the function achieves
this exactly in FOSM (e.g. Baecher and Christian 2003). As noted by Schiermeyer (2009), the FOSM algorithm
bears a striking resemblance to the Newton-Raphson method for solution of systems of nonlinear equations (e.g.
Griffiths and Smith 2008) where the derivatives are used to “point” towards the solution corresponding to

sz(Xl,Xz,...,X )z 0. The FOSM method is trying to find the solution in a single shot, i.e. just a single

n

! Excel FORM programs are available at the author’s website: https://inside.mines.edu/~vgriffit/FORM
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“iteration”. If the equations to be solved are linear, Newton-Raphson obtains the exact solution in a single
iteration, as does FOSM in a probabilistic study. Nonlinear arrangements of M however, have derivatives at the
mean point that do not point exactly at the solution, leading to different (incorrect) solutions when using just one
iteration. Ang and Tang (2007) note that providing M is not highly nonlinear, and the variances of the input
random variables are relatively small, Egs.(3) will give reasonable approximations.

FOSM has the benefit of being a hand calculation method that requires minimal computational help. It also
involves calculation of derivatives, whose magnitudes and signs give useful physical insight into the sensitivity
of the performance function to the various input parameters. Non-unique solutions remain a drawback of FOSM
however, so users are strongly encouraged to seek a linear performance function when using FOSM, which will
deliver the same probabilities as FORM.In spite of these drawbacks, FOSM is a useful introductory probabilistic
tool for geotechnical analysis. It can give insight into geotechnical systems that are reasonably linear and with
modest coefficients of variation of input variables. The following section shows a worked example of a
geotechnical analysis using FOSM.

2.1 FOSM: Wall sliding example

The cantilever wall shown in Figure 4 retains a sand backfill and rests on a frictional base. The earth pressure is
assumed to be at the limiting active state. The problem is similar to one presented by Duncan (2000), except with
metric units and deterministic unit weights for the concrete (y,)and sand (y,,). The analysis includes two key

probabilistic parameters, namely the Rankine active earth pressure coefficient ( K ) and the coefficient of
friction at the base of the wall (tano).

93
¥ V73
Cohesionless soil
=0, ¢
Active Earth Pressure Coefficient
H=503%7 K, = tan*(45 - ¢/ /2)
Ye Yer 5
12 Units in kN and m
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Figure 4. FOSM analysis of sliding of a cantilever retaining wall

The probabilistic input data are shown in Table 3, which initially includes some variability in the unit
weights.

Table 3. Probabilistic input data for wall sliding problem
Property i c
7. (kN/m?) | 23.58 | 0.31
vy (KN/m*) | 18.87 | 1.10
K 0.333 |0.033

ad

tan o 0.5 0.05

The coefficient of variation of the unit weights are both small, as suggested by Table 1, so these parameters
will betreated as deterministic and fixed at their mean values. In this example, the two remaining random

variables, K, and tanoare given a negative cross-correlation coefficient of o, . - =—0.75,0n the assumption

that a higher soil friction angle will lead to a lower K and a higher tand at the concrete/soil interface below
the wall(and vice versa).

This can be set up as a load and resistance problem, where the load (L) is the limiting active force and the
resistance (R) is the maximum mobilized frictional force beneath the wall. Following some arithmetic, it can be
shown that L =238.71K, and R=238.40tano. Next it is necessary to set up a performance function M in
which M <0 signifies failure (wall sliding). As usual, a choice of performance functions present themselves.
One option is to base the performance function on the Factor of Safety, where

5
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M =FS -1 where FS:E:M 5)
L~ 23871K,

As an aside, it may be noted that the factor of safety based on means from Table 3 is given by S =1.5

Geotechnical engineers are familiar with the concept of a Factor of Safety, so Eq.(5) may at first seem a
good choice, however this performance function is nonlinear with respect to the random variables, since they are
represented as a quotient.

As recommended earlier in the paper, FOSM users should look for a performance function that is linear,
hence the calculation will continue with

M =R-L=23840 tano —238.71 K, (6)
From Eqn.(4),

COV[Ka,tané'] =-0.75%x0.033x0.05 =-0.0012375 @)

and from Eq.(6)

a(fTAr/ié‘) =238.40 and STMA =-238.71 ®)

hence from Egs.(3)

H,, =238.40x0.5—-238.71x0.333=39.71

oy = J0.05% x238.407 + 2x 0.0012375x 238.40x 238.71+ 0.033> x 238.71> = 18.57 )
It then follows that the reliability index is given by

ﬁ:g—zzfg—';l:z.m (10)

and the probability of failure, assuming M is normal, by

pf=1—<D(,8)=0.016 (1.6%) (11)

It may be noted that FOSM requires no assumption to be made about the distributions of the input
parameters.
Exactly the same result is given by FORM for the same data, which is to be expected since the performance
function used in FOSM is linear. If the small variability of the unit weights is included, FORM gives
p, =0.017 (1.7%)

3 FORM

The First Order Reliability Method (FORM) typically employs an optimization algorithm that searches
systematically for the closest point on the performance function to the mean point of a multi-variate probability
density function. The performance function is the locus of M =0. The closest point is often referred to as the
“design point”, which is an unfortunate choice of words since these values correspond to failure, and would
certainly not be used in design. A much better term is the “most likely failure point”. Table 2 shows that the
FORM solutions are all the same regardless of the arrangement of the Performance Function. The consistent
solutions delivered by FORM is an attractive advantage of the method.

Once the most likely failure point has been found, the reliability index follows, as indicated on Figure 5, as
the smallest contour value of £ just touching the performance function. For a normal distribution, the

probability of failure can then be found using
Py =1-0(f) (12)

where @ () is the standard normal cumulative distribution function.
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Figure 5. FORM finds the most likely failure point and the reliability index

Figure 5 shows a case involving two normal correlated random variables X, and X, with parameters

( U0, )and ( U, .o, ), and a correlation coefficient given by p . In Figure 5, the random variables have been

X - X, —
transformed to standard normals, where X, = 1~ My and X, = Bl (Hasofer and Lind 1974) hence the mean

X Xy

point is given by X, =0and X, =0. A conventional FORM analysis using a standard optimization algorithm, will

then find the most likely failure point()_c,y) and hence the reliability index £ . The method is called “first

MLFP ’

order” because once ()_C,f)MLFP has been found, the performance function is replaced by a linear function at

()_c,)_/)MLFP with the same slope, as shown in Figure 5. It can be seen that in this case the first order

approximation will lead to a small overestimation of p, .

3.1 FORM by solution of nonlinear equations

An alternative to the optimization method for finding the most likely failure point and the reliability index, is to
solve simultaneous nonlinear equations using a numerical method such as Newton-Raphson. Consider the
following nonlinear performance function (Eq.13) involving two (n = 2) correlated normal random variables

X, and X, and a second function (Eq.14), representing the contours of the reliability index /3 (Hasofer and Lind
1974).

ax;’ +bx," +c=0 (13)
xl _llel
-1
X, - X, = 1 o,
{ A, X% ﬂM p} g0 (14)
le O-)c2 p 1 x2 _/sz
o)

1 —-P
-1
{1 p} _ 1-p> 1-p° :{Cn clz} (15)
p 1 -P 1 € Oy
1-p> 1-p°

which in the interests of simplifying the algebra, will be represented using c,, terms as shown.
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Further simplification is achieved by squaring Eq.(14) and expanding the matrix products. Finally, for
clarity, the variables (x1 , X, ) are temporarily replaced by (x, y)leading to the pair of equations:

ax’ +by* +¢=0 (16)

2 2
X—p, X—p || Y H, Y—H,
[ j C11+[ j[ j(012+021)+[ J] sz_ﬁzzo (17)
o, o, o, o,

To find the point of tangency, first compute %from both Egs.(16) and (17)and equate them (Martin 2022).
x

Thus from Eq.(16),
3t + 20y Y =0 (18)
dx
hence
2
Q __ 3ax (19)
dx 2by
and from Eq.(17)
2x_'ux LCn + adnt LQ"‘_y_luy i (CIZ +Czl)+2y_luy chzﬂzo (20)
o, o, o, o,d& o0, O, o, o, “dx
which can be rearranged as
y—H, 1 x—pu 1 x—u 1 y—p, 1
% 2 ——C,, + = —(clz+c2l) + 2—’u—cn+—“—(c12+cﬂ) =0 (21)
o, o, o, o, o, O, o, o,
hence
x—pu 1 y—u, 1
2 o+ (e +ey)
dy 0. 0, o, o, 22)
dx y—p, 1 x—u, 1
2 Ty T+ : —(0124-021)
o, o, o, o,
. dy .
Equating d—from Eqgs. (19) and (22) gives
X
PR Lcll + 4 i(c12 +¢y)
o, o, o, o, _ 3ax’ (23)
y—H, 1 x—u, 1 2b
2 L—c,), + —(clz +021) Y
o, o, . O,

Eq.(16) remains unchanged as the performance function, which is now combined with the equated
derivatives from Eq.(23) to give the following pair of nonlinear equations.

fi(xy)=a’ +by’ +c=0 (24)
x—u, 1 y—H, 1
270_ ;cll-‘r o ;(CIZ +C21) 3 )
o T m
B A Y
2 L —c, + (e, +ey)
g, O, o, o,

Solution of these two equations will give the most likely failure point (x, y) and hence ()_cl , )_cz)

MLFP’ MLFP’
A Newton-Raphson solution strategy (e.g. Program 3.7 from Griffiths and Smith 2008) will be used which
requires further differentiation, so to reduce the volume of algebra, define
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x—pu 1 y—u, 1

x,y)=2 —c, + —(c, +c
g( Y) o o 11 o, O}( 12 ﬂ)
and

y—u, 1 x—u 1
h(x,y)=2 Y —c), + = — (e, +¢y)

o, o, o, o,

hence Eq.(25) becomes

8 (X, J/) 30)62

X, y)="—""=%- =0
£ (%) h(x,y) 2by
For Newton-Raphson, further differentiation of Egs. (24) and (28) gives

9 _ 3ax’? o9 2by
Oox oy

o _ 2cnh(x,y)o"v —(cp+¢y)g(x. )0, _bax  Of, _ (¢ +021)h(x,y)0y —2cy,g(x, )0, . 3ax?

(26)

@7n

(28

29

o olo, (h(x.y)) 2y 0.0; (h(x.7))
Consider a particular case with parameters given in Table 4.

Table 4. Parameters used in the example problem
a b ¢ Bx | Ox | Wy | Oy p
-0.01 | -03[11.0]6.0]1.0]7.0]0.75] -0.35

2by*

Returning to the subscript notation for the random variables, the initial guess (xl,x2 ) ,used in the Newton-

Raphson program, should not be set equal to ( Ty ), since this will lead to dividing by zero in Egs.(26) and

(27). The results shown in Table Sareobtained with an initial guess of (6,6)

Table 5. Results file from Program 3.7 (Griffiths and Smith 2008)
---Newton-Raphson for Systems of Equations—---
Guessed Starting Vector

6.0000 6.0000
First Few Iterations
5.8917 5.4637
5.8504 5.5106
5.8440 5.4770
5.8442 5.4785
5.8442 5.4784
5.8442 5.4784
5.8442 5.4784
Iterations to Convergence
8
Most likely failure point
5.8442 5.4784
beta
2.2294

The most likely failure point is given as (xl,x2 ) .

= (5.844,5.478), which after normalization becomes

()_Cl,)_cz) —(—0.155,—2.029) as shown in Figure 5. The solution was obtained in 8 iterations with a

MLFP ~

convergence tolerance of 1x10°* . Having found the most likely failure point, the reliability index of 5 = 2.23

follows from Eq.(14).

9
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4 RFEM

The Random Finite Element Method was developed in the 1990’s (Griffiths and Fenton 1993, Fenton and
Griffiths 1993, Fenton and Vanmarcke 1990, Smith and Griffiths 2004) for advanced probabilistic analysis in
geotechnical engineering. The method involves random field generation of soil properties combined with finite
element analysis, with local averaging corrections to account for element size. It is the only method able to
account systematically for spatial correlation of soil properties. In addition to the mean (n) and standard
deviation (o) of soil properties therefore, the RFEM also requires as input the spatial correlation length(6) which

has units of length and may be anisotropic(&)( # 6‘) Source code for 10 geotechnical applications is available

for free download as shown in Table 5 below.

Table 5. RFEM programs available for free download from random.engmath.dal.ca/rfem/

. mrbear2d: 2-D shallow foundation stochastic bearing capacity analysis,
. mrdam2d: 2-D stochastic earth dam analysis,

. mrearth2d: 2-D stochastic earth pressure analysis,

. mrflow2d: 2-D stochastic seepage analysis,

. mrflow3d: 3-D stochastic seepage analysis,

. mrpill2d: 2-D stochastic pillar analysis,

. mrpill3d: 3-D stochastic pillar analysis,

. mrsetl2d: 2-D shallow foundation stochastic settlement analysis,

. mrsetl3d: 3-D shallow foundation stochastic settlement analysis,

. mrslope2d: 2-D stochastic slope stability analysis,

e e e e TR AT I SV o

f—

Due to the great interest in the probability of slope stability failure as an important alternative to the
traditional factor of safety, the author and Professor J.

Huang of the University of Newcastle, NSW, have developed an upgraded version of mrslope2d.
Currently called twosided,the enhanced version gives users the option of(i) two-sided embankments,(ii) two
soil layers,each with their own statistical properties and (iii) a seepage surface and external reservoir water
surface as shown in Figure6. Much research remains to be performed using these enhanced features.

nx2
h lfgrad |<_ _){ —
T ’7 rtgrad _T— dx

4 [

y ny2 — i
3 K —
I ]
T . l nklnf pyer [ DI;
nyl
L 1]
— nx1 —f jfe—— nx3 ——

Figure 6. RFEM program twosidedallows a two-sided embankment, two soil layers and a free-surface

4.1 Probabilistic analysis of the critical pool level by RFEM
The inclusion of waterintwosided is an important upgrade, so the first example considered here is a

probabilistic analysis of the classical problem of the critical pool level. It has been observed that when a ¢'—¢'
slope includes a horizontal water table that continues outside the slope as free-standing water, there is a “worst-
case” elevation of the water table that leads to a minimum factor of safety (Lane and Griffiths 1997, Griffiths

and Lane 1999, Bromhead et al. 1999, Michalowski 2009). Figure 7 shows the basic geometry and a typical
random field in which dark zones represent stronger soil.
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Figure 7. Geometry of slope for RFEM probabilistic critical pool analysis and a typical random field of cohesion.

Previous investigations of the critical pool level have been deterministic, so in this study a probabilistic
analysis is presented, where the shear strength parameters are random and lognormal. The unit weight of the soil
is deterministic, as is the height of the 2:1 slope. The following parameters are assumed:

Hy =20°% o,=4°, 1, =10 kPa, o,=5 kPa, y=20 KN/m’ (above and below WT), H =10 m

The RFEM analyses investigate the probability of slope failure for different depths of the water table below
the crest given by L . Each value of the water depth in the range 0 < L < H was investigated using 1000 Monte-
Carlo simulations. A fail/no-fail analysis was performed for each simulation, so the probability of failure p,

was estimated as the number of simulations that indicated slope failure divided by 1000. Repeatability checks
confirmed that 1000 simulations were sufficient for reasonable accuracy. Three isotropic spatial correlation
lengths were considered in the study where 6 =2.5,5.0 and 10 m.

0.20
0.18 P
0.16

—e—0-025 ) \
0.14 ) & AN

/ ‘
——0=0.5 /£ 3\
0.12 / N\

& ——0-10 \|
0.08
0.06
0.04
0.02

0.00 &

L/H
Figure 8. Probabilistic critical pool level analysis using RFEM

The results shown in Figure 8 use a dimensionless water depth (L/ H) and spatial correlation length
(©=6/H). All three curves indicate striking p, maxima in the vicinity of L/H ~0.7 which agrees with the

deterministic results for a minimum factor of safety.The explanation of this phenomenon lies in the trade-off
between the stabilizing influence of the free-standing water outside the slope and the de-stabilizing influence of
the pore pressures within the slope affecting the frictional component of resistance.

4.2 Worst case spatial correlation length in a probabilistic active earth pressure analysis

The “worst case” spatial correlation length is by now a well-known phenomenon in probabilistic geotechnical
analysis. Firstnoted by Baecher and Ingra (1981)in a settlement problem and since shown numerically in
numerous geotechnical applications using the Random Finite Element Method, e.g. Griffiths and Fenton (1993)
in seepage analysis, Fenton and Griffiths (2002) in differential settlement and Zhu et al. (2019) in slope stability
analysis.
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In this section, the influence of spatial correlation on the active earth pressure acting on a smooth retaining
wall is presented, following the work of Fenton et al. (2005), Allahverdizadeh (2015) and Allahverdizadeh et al.
(2016). The program used was mrearth2d from Table 5. Figure 9 shows the finite element mesh used for the
analyses with a wall of height # =1m .

element/sampling point (H/2,H/2)

I g

H=1

'—
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Figure 9. Finite element mesh used for probabilistic active earth pressure analysis
The soil was assumed to be cohesionless, with a mean strength of y,,, =0.577 ( Uy = 30°) and a
deterministic unit weight of » = 20kN/m’. The coefficient of variation (V = Oy [ Mian ¢,) and (isotropic) spatial

correlation length (@ =60/H ) of tan ¢’ were then varied in an extensive parametric study. For each combination

of V and® , a Monte-Carlo simulation involved generation of a random field of tang', followed by

incremental translation of the wall away from the soil until the average limiting active force against the wall fell
to a constant minimum value givenby P ..

HH

])(JR

Figure 10. Typical simulation of the probabilistic active earth pressure analysis (deformations magnified)

In addition to the above, with each random field simulation, a virtual soil “sample” was taken at a depth and
distance from the wall of H/2 as indicated in Figure 9. This sampled value, tan ¢ was then used in a Rankine

active earth pressure calculation to estimate the active force on the wall given by?

2
P - yH (30)

aS , " 12 2
2[tan¢s+(1+tan ¢S) }

A typical Monte-Carlo analysis involved 1000 simulations, with each giving different values of P, and
Ly
The Rankine earth force from Eq.(30) was increased by a Factor of Safety to give a “design” value, which

was then compared with P, from the RFEM analysis. Finally, the probability of failure p, was defined as
p; =P[P, > FSxPy] GD

and estimated as the number of simulations in which P, > Fi§ x P divided by the total number of simulations
performed. Several different values of F'S were considered in the study with results shown in Figure 11.

)
* Note the identity for K, = tan’ (45° — ' /2) E[tan ¢ +(1+ tan’ ¢')”2] (Griffiths et al. 2002)
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Figure 11. Probability of failure vs. spatial correlation length for the active earth pressure problem with different £S values,
V'=10.2 and pang' = 0.577

The most striking features of these results are the very pronounced maxima in the probability of failure for
all F'S-values. With a coefficient of variation of V' =0.2, the maxima occurred around ® ~ 1, however it was
noted that for higher values of V' (results not shown in this paper), the maxima occurred at lower values of © .
The results show that there is a “worst case” spatial correlation length giving higher values of P, from the

RFEM analyses. Stability problems such as these are dominated by the weaker soil, and the result suggests that
for ¥ =0.2, a spatial correlation length approximately equal to the height of the wall, facilitates the formation
of failure mechanisms passing through weaker zones. These weaker zones have lower friction angles leading to
higher active forces. Further results from these parametric studies can be found in Allahverdizadeh (2015).

5 Concluding Remarks

It is well known that the FOSM method can give non-unique results depending on the way in which the
performance function is arranged. This great disadvantage of the FOSM method is tempered by its convenience
as a hand computation tool, and the fact that many geotechnical functions exhibit almost linear behavior around
the mean values where derivatives are computed. The FORM method on the other hand gives unique results
regardless of the arrangement of the performance function. If the performance function is a linear function of the
random variables however, FOSM and FORM give the same result. When using the FOSM method therefore, it
is important to choose a linear arrangement of the performance function if possible. It may be justified to treat
some random variables with relatively small variability as deterministic, if this facilitates a linear combination of
the more influential remaining random variables.

The FORM is typically solved as an optimization problem, in which the “most likely”” values of the random
input variables to cause failure are found using routine software (e.g. Excel). In this paper, an alternative solution
method is proposed in which the most likely values are found using a Newton-Raphson algorithm for systems of
nonlinear equations. An example was presented to find the point of tangency between a nonlinear performance
function and the elliptical contours of the reliability index. The method seems robust, and converged well using
freely available software. Interested readers are encouraged to extrapolate this approach to multiple random
variables.

The RFEM is a more computationally intensive method that superimposes locally averaged random fields
for each input random variable over a refined finite element mesh, followed by Monte-Carlo simulations. The
method is the only one that can properly account for the mean, standard deviation and spatial correlation
structure of a soil deposit. Both the examples presented in this paper led to interesting maxima in the probability
of failure as a function of varying conditions.

The first example examined the critical pool level of a ¢’ — ¢’ slope subjected to a varying horizontal water

table. The results indicated a maximum p, corresponding to a critical height of the water table at about 30% of

the slope height above the base. This is consistent with earlier deterministic studies of this problem, which led to
a minimum factor of safety observed at a similar location. The second example showed the influence of spatial
correlation length on an active earth pressure problem in which the earth pressure computed by RFEM was
compared with a factored deterministic value based on a virtual soil sample taken at a given location. A striking
maximum in the probability of failure was observed at a “worst case” correlation length similar to the wall
height. In the absence of good quality data on the spatial correlation length at a soil site, the “worst case” spatial
correlation length might be initially assumed for conservative design.

13
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Risk assessment of design failure requires an estimate of the probability of failure, weighted by the
consequences of failure. The consequences of failure are highly site specific, but the probability of failure can be
estimated independently. The paper described three probabilistic tools of increasing complexity, namely FOSM,
FORM and RFEM. In all the methods, the goal was essentially the same, namely to estimate the probability of
failure, either ultimate or serviceability, depending on the selected performance function. All the methods
required the mean and standard deviation of the input random variables, but the RFEM was alone in also
requiring information about spatial correlation lengths. The paper aimed to highlight some characteristics and
curiosities of results given by the different methods, which might guide users in their proper application to
probabilistic geotechnical analysis.
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