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Abstract:Since artificial intelligence (AI) was first applied to geotechnical engineering in the early-1990s, in the form of
artificial neural networks (ANNS), it has shown great promise in providing superior estimates of a wide range of geotechnical
behaviors and applications, when compared against traditional techniques. This paper examines two artificial intelligence
techniques, namely ANNs and genetic programming (GP), that have been applied successfully by the author and his co-
workers to the settlement of shallow and pile foundations and predicting the performance of rolling dynamic compaction. The
paper also examines the benefits and limitations of Al in the context of geotechnical engineering, and the process for
developing optimal models.
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1 Introduction

In 1956, a group of young scientists first imagined and explored the proposition that “every aspect of learning or
any other feature of intelligence can, in principle, be so precisely described that a machine can be made to
simulate it” (Crevier 1993). Artificial intelligence (AI) was thus born, and since that time, it has pervaded almost
every aspect of human endeavor. Earlier, McCulloch and Pitts (1943) proposed a mathematical framework for
artificial neural networks (ANNs), which seek to mimic the learning behavior of the brain. In the late 1980s,
research in ANNs gained considerable momentum with the work of Rumelhart et al. (1986) and McClelland and
Rumelhart(1988).ANNs werefirst applied to geotechnical engineering in the early 1990s,by Sterling and Lee
(1992) and Gribb and Gribb (1994), as reported by Baghbani et al. (2022), and also by Goh (1994). Since then,
Al, ANNs and machine learning have been applied to almost every aspect of geotechnical engineering. This
paper focuses on machine learning, which is a subset of Al, and in particular on ANNs and genetic programing
(GP). Since ANNs and GP are data-driven methods, they do not need any prior knowledge of the nature of the
relationship(s) between the input and output variables, and this has made them particularly amenable to solving
non-linear, complex problems, and consequentlyare well-suited to geotechnical engineering applications.This
paper presentsthe application of ANNs and GP to a number of geotechnical engineering problems in order to
demonstrate their efficacy.The processesfor obtaining optimal models will be discussed, as well as the benefits
and limitations of ANNs and GP.

1.1 Artificial neural networks (ANNs)

Artificial neural networks (ANNs) arenumerical surrogates of the human brain, which is a biological neural
network. The latter consists of billions of neurons, or nerve cells, which are connected via synapses. The ANN
equivalent is termed a node or a processing element which,like neurons, are interconnected. A typical ANN
structure is shown in Figure 1. On the left-hand-side of the figureis a series of input nodes, or input variables,
which together form the input layer. On the right-hand-side is the output layer, which consists of one or more
output nodes. An ANN also incorporates one or more hidden layers, which comprise a number of hidden layer
nodes. Figure 1 shows a feedforward network, as the connections between nodes are in the forward direction
only, whereas feedback networks pass information both in the forward and reverse directions.

As humans learn, the connections between the neurons (i.e. the neural pathways) strengthen. In the same
way, as ANNs are presented with more data, they ‘learn’ and the weights (which are similar to the coefficients in
traditional statistics) of the connections between the nodes are optimized, so that they yield the most accurate
predictions of the output variable(s).

During the model development phase, the data are subdivided into three separate data sets, training, testing
and validation. The training set usually contains the majority of the data, and it is this data set that the ANN uses
to ‘learn’ the relationship(s) between the input parameters and the output(s); in other words, to optimize the
connection weights. The testing data set is used to ‘test’ the ANN to ensure that it does not overfit the data. This
is important, because the objective of developing most ANN models is to obtain one that is general enough to
provide reliable predictions over a wide range of input values. Finally, the validation data set is one that is
hidden from the ANN software during model development. It is only after the ANN model has been optimized,
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using only the training and testing data sets, that the validation set is presented to the ANN model to assess its
accuracy.

Output 1

Output 2

Input Layer Hidden Layer Output Layer
Figure 1. Typical ANN structure.

1.2 Genetic programing (GP)

Genetic programing (GP) is one of a number of approaches based upon evolutionary algorithms that mimic
Darwin’s evolution theory in relation to optimizing a solution to a predefined problem(Koza 1992).In GP, the
individuals in a population are represented by computer ‘programs’ of variable size and shape that are
hierarchically composed of a set of functions and terminals fitted to a particular problem domain (Koza 1992).
The function set may consist of arithmetic functions (+, —, %, /), mathematical functions (sin, cos, /n), Boolean
logic operators (AND, OR, NOT), logical expressions (IF or THEN), iterative functions (DO, CONTINUE,
UNTIL) and/or other user-defined functions (Sette and Boullart 2001). The terminal set typically consists of
input variables attached to the problem domain and pre-specified, or randomly generated, numeric constants.

2 Geotechnical Engineering Applications

The processes of establishing and assessing the efficacy of ANN and GP models are best appreciated by
applying them to various geotechnical engineering problems. My foray into Al began with ANNsmore than two
decades ago in 1999, along with my first PhD student, Mohamed Shahin, who is now a professor at Curtin
University, in Western Australia. Together, among other topics, we explored the efficacy of applying ANNs to
predicting the settlement of shallow foundations on sands. This work is presented below in §2.1. In §2.2, the
work undertaken together with Dr. FereydoonPooyaNejadis presented,where ANNs were used to predict the
load-settlement behavior of a wide range of piles in ground with varying properties. Finally, in §2.3, more recent
work will be explored involving the use of both ANNs and GP to predict the performance of the 4-sided impact
rollerin varying ground conditions.

2.1 Shallow foundations using ANNs

Shahin et al. (2002b) examined the efficacy of applying ANNs to the settlement of shallow foundations on sand.
The first step of the process of developing any ANN model is to compile a database. From the published
literature, Shahin et al. (2002b) created a database which included189 separate shallow foundation load-
displacement tests.The databaseincorporated 5 input variables (foundation width, B (m); net applied foundation
pressure, q (kPa); average standard penetration test (SPT) number, N; foundation geometry ratio, L/B, where
L(m) is the foundation length; and the foundation embedment ratio, D;/B, where Dy(m) is the foundation
embedment depth) and a single output variable, the measured settlement,S,,, (mm). It is acknowledgedthat the
SPT is not the most ideal measurementtechnique by which to represent the geotechnical characteristics of the
sands in the model.However, when compiling databases, one must rely on the available data, otherwise one must
perform the testing oneself, and generally the latter is a major endeavor, and is often prohibitive.

As mentioned above in §1.1, prior to ANN model development, the database needs to be subdivided into
three separate data sets, training, testing and validation. For optimal ANN performance, it has been shown that it
is best to ensure that the statistics of each of the three data sets, are as similar as possible (Shahin et al. 2004).
This is to ensure that the three data sets are equivalent to the same overall, database population. As a
consequence, the statistics of the input and output variables included in the database, for each of the three
separate data sets, are summarized in Table 1.

The ANN model development was facilitated by the Neuframe software package (Neusciences 2000),
which is unfortunately no longer available. However, interested readers who wish to develop ANN models of
their own are encouraged to explore MATLAB (MathWorks 2022), which provides sophisticated ANN tools.

Determining the architecture and the internal settings for yielding optimal ANN performance is not
automatic and is usually undertaken iteratively using a trial-and-error approach. It is beyond the scope of this
paper to provide a detailed treatment of the entire ANN model development process and the internal parameters
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incorporated therein, but briefly, one most determine the appropriate number of hidden layers, and hidden layer
nodes, epoch size, momentum term and learning rate, to yield optimal performance. Readers interested in
learning more about these,and the optimization process,are referred to Shahin (2003). After several iterations, the
model shown in Figure 2 was deemed optimal. As can be seen, only a single hidden layer incorporating two
nodes, was adopted. As will be seen later, such a parsimonious model is particularly desirable as it can facilitate
translating the ANN model into a tractable equation suitable for hand calculation.

Table 1. Summary of statistics for the training, testing and validation data sets (Shahin 2003).

Model variables Statistical parameters
and data sets Mean Std. dev. Min. Max. Range
Footing width, B (m)
Training 8.3 9.8 0.8 60.0 59.2
Testing 9.3 10.9 0.9 55.0 54.1
Validation 9.4 10.1 0.9 41.2 40.3
Footing net applied pressure, g(kPa)
Training 188.4 129.0 183 697.0 678.7
Testing 183.2 118.7 25.0 584.0 559.0
Validation 187.9 114.6 33.0 575.0 542.0
Average SPT blow count, N
Training 24.6 13.6 4.0 60.0 56.0
Testing 24.6 12.9 5.0 60.0 55.0
Validation 24.3 14.1 4.0 55.0 51.0
Footing geometry, L/B
Training 2.1 1.7 1.0 10.6 9.6
Testing 2.1 1.9 1.0 9.9 8.9
Validation 2.1 1.8 1.0 8.1 7.1
Footing embedment ratio, D; /B
Training 0.52 0.57 0.0 3.4 34
Testing 0.49 0.52 0.0 3.0 3.0
Validation 0.59 0.64 0.0 3.0 3.0
Measured settlement, S, (mm)
Training 20.0 272 0.6 121.0 120.4
Testing 214 26.6 1.0 120.0 119.0
Validation 20.4 25.2 1.3 120.0 118.7

Input layer

Figure 2. ANN structure for predicting settlements of shallow foundations on sand (Shahin 2003).

When assessing the performance of Al models, goodness-of-fit metrics are calculated, such as the
coefficient of correlation, r, (which is given in any standard statistical textbook), the root mean squared error,
RMSE(Eq. 1), and the mean absolute error, MAE(Eq. 2).

1 n , 2
RMSE = ;Z(yj—d,-) (M
j=1

n
1
j=1
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where: y; is the model (predicted) output; d; is the desired (observed) output; and n is the number of data.

In order to assess the true predictive performance of the model, in the analyses that follow, only the
validation set will be examined, recalling that the validation data are withheld from the model during training.
When compared against the commonly used, traditional methods (Meyerhof 1965; Schultze and Sherif 1973;
Schmertmann et al. 1978), as shown in Figure 3 and Table 2, the ANN performs extremely well.
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Figure 3.Predicted versus measured settlements of shallow foundations on sand for the: (a) ANN, (b) Meyerhof (1965),
(¢) Schultze and Sherif (1973), and (d) Schmertmann et al. (1978) methods (Shahin 2003).

Table 2. Summary of performance of ANN model and traditional methods(Shahin 2003).

Performance ANN Meyerhof Schultze and Schmertmann et
measure (1965) Sherif (1973) al. (1978)
r 0.905 0.440 0.729 0.798
RMSE (mm) 11.04 25.72 23.55 23.67
MAE (mm) 8.78 16.59 11.81 15.69

By interrogating the connection weights, as outlined by Shahin et al. (2002a), the following relationship is
obtained from the optimal ANN model, to calculate the predicted settlement,S,, (mm):

120.4 ]

S, =06+ [1 + ¢(0312-0.725 tanh x, +2.984 tanh x;)

)

where:
x; =0.14+1073[3.8B + 0.7q + 4.1N — 1.8(L/B) + 19(D;/B)|
x, = 1073[0.7 — 41B — 1.6q + 75N — 52(L/B) + 740(D;/B)]

Rezania and Javadi (2007) sought to improve the above ANN-based relationship, using genetic programing
(GP). Selecting 173 cases of the 189 used by Shahin et al. (2002b), Rezania and Javadi (2007) proposed a more
tractableand slightly more accurate model inEq. (4) than that presented in Eq. (3) above.

q(1.80B + 4.62) — 346,150, 11.22L — 1111
S, = L+

» N7 I “
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Using Eq. (4), Rezania and Javadi (2007) reported values of r = 0.978; RMSE = 6.86 mm; and MAE =
4.92 mm, which for the ANN model in Eq. (3), compares against 0.960, 9.20 mm and 6.65 mm respectively, for
the curtailed data set.

Adopting the process described by Shahin et al. (2002b), it is possible, using ANNs, to determine the
sensitivity of the various parameters which contribute to the output. Shahin et al. (2002b) reported the
parameters, ranked from highest to lowest relative importance, as: N, B, q, Dy /B, andL/B.

2.2 Pile foundations using ANNs

Pooya Nejad and Jaksa (2017) developed an ANN model to predict the axial load-settlement behavior of single
piles embedded in a variety of ground types. The authors compiled a dataset containing 56 individual pile load
tests. By digitizing these load-displacement curves, 499 pairs of loads and displacements were subsequently
obtained. From these data, Pooya Nejad and Jaksa (2017) established a database consisting of the following 21
input parameters: (1) type of test (maintained load or constant rate penetration); (2) type of pile (concrete, steel,
and composite); (3) type of installation (bored or driven); (4) end of pile (closed or open); (5) axial rigidity of the
pile (EA); (6) cross-sectional area of the end of the pile (Ayp); (7) perimeter of the pile in contact with the soil
(0); (8)length of the pile (L); (9) embedded length of the pile (Loppeq), (10-19) the averaged cone penetration
test (CPT)measurements of cone tip resistance (q.) and sleeve friction (f;) along the embedded length of the pile
(Geys fsy> ey fsyr Qegs fsz ey [y es-fsg)s (20) cone tip resistance at the end of the pile (qcﬁp), which is
calculated using the Bustamante and Gianeselli (1982) procedure;and (21) the applied load (P). The pile
settlement (s,,) was the single output variable. The 10 CPT parameters (g, , .. f;, , ) are obtained by dividing

the embedded length of the pile into 5 layers of equal thickness. The values of g, and f; in each layer are then
averaged to yield q., , . andfy, , . The intention of this was to capture the fidelity of the vertical variability of

the ground with an acceptable degree of accuracy,whilst at the same timeminimizing the number of soil layers.

Of the 499 sets of variables, each containing the 22 parameters above, 79% (395 cases, 8,690 data) were
used for training, 11% (55 cases, 1,210 data) for testing, and 10% (49 cases, 1,078 data) for validation. The ANN
model development was again undertaken using the Neuframe software package (Neusciences 2000). In order to
obtain the optimal model, various ANN architectures were explored, consisting of one to four hidden layers. It
was found that the optimal single-layer model consisted of 10 nodes; the optimal two-layer model consisted of 8
nodes in both the first and second layers; the optimal 3-layer model contained12 nodes in the first,6 in the
second, and 3 in the third layer; and the optimal 4-layer model contained 16, 11, 5 and 2 nodes in hidden layers 1
to 4, respectively. Overall, the two-layer model was found to provide the greatest accuracy, withr = 0.991
andRMSE =3.21 mm, which is shown in Figure 4 in the form of a scatterplot.
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Figure 4.Predicted versus measured pile settlements (PooyaNejad and Jaksa 2017).

The ANN model was found to outperform significantly the non-Al methods of Vesic (1977) and Poulos and
Davis (1980).In order to examine the validity of the ANN model further, it was tested against two completepile
load tests that were not incorporated in the ANN model development. In other words, these data were not part of
the 499 cases used to create the ANN model. The predicted load-settlement curves (shown in blue) are compared
against those obtained from measurements (in red), as shown in Figure 5.
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Figure 5.Comparison of predicted load-settlement curves from two additional pile load tests: (a) A&M]1-concrete pile
(Briaudand Tucker 1988); (b) TWNTP4-steel pile (Yen et al. 1989).

It can be seen from Figure 5, that while not perfect, the ANN performs admirably. The goodness-of-fit
results indicate that the model performs well for both the concrete pile, with r = 0.956 andRMSE =4.39 mm,
and the steel pile, with r = 0.998 andRMSE =3.44 mm. For the concrete pile (Fig. 5a), an error of 3.2% is
observed between the predicted (38.0 mm) and the measured (39.3 mm) settlements at the peak load of 1,140
kN. The steel pipe pile (Fig. 5b) performs less satisfactorily, with an error of 27.5% (7.7 mm) between the
predicted (20.3 mm) and measured (28 mm) settlements associated with the peak load of 4,200 kN. Furthermore,
it is evident from the predicted behavior that the ANN model has honored the non-linear shape of both of the
load-settlement curves. Hence, it can be concluded from the above, that the ANN model provides a very good
predictive capability of the pile behavior within the range of the database.

A sensitivity analysis performed on the input variables employed in the ANN model, found the relative
importance as summarized in Table 3. As one might expect, the soil characteristics from the CPT, as well as the
applied load, are the most critical parameters that influence pile settlement. Interestingly, the pile perimeter, O,
which contributes to shaft adhesion, and the type of installation, whether bored or driven, are the least significant
of the input parameters.

Table 3. Summary of relative importance (%) of the ANN input variables(Pooya Nejad and Jaksa 2017).

Input variables Relative importance (%)
Soil properties (qcl, a5 fsl,z,,.. o qctip) 35.1
Applied load (P) 28.1
Embedded pile length (Leypeq) 5.6
End of pile (closed or open) 52
Pile length (L) 5.1
Type of pile 4.9
Type of test 4.4
Pile rigidity (EA) 3.8
Area of pile tip (Agp) 33
Type of installation 3.2
Perimeter of pile (0) 1.3

As the optimal ANN model incorporates two hidden layers, tractable relationships, like the ones given in
Eqgs. 3 and 4, are not readily available. To facilitate dissemination of the ANN model, Pooya Nejad and Jaksa
(2017) provided a series of design charts and the complete pile load test database.

2.3 Rolling dynamic compaction using ANNs and GP

This section presents the application of Al to the rolling dynamic compaction (RDC)ground improvement
technique.RDC consists of a non-circular module, which has either 3, 4 or 5 sides, that is towed by a tractor, as
shown in Figure 6. As the module rolls, it tips about its corners and then falls impacting the ground with a
combination of potential and kinetic energy. Whilst this technique has been adopted successfully in practice for
more than 70 years, until recently, modest fundamental research has been carried out to model and predict its
behavior. A significant challenge with RDC is predicting and optimizing its performance in a range of ground
conditions. Recently, ANNs and GP have been adopted to examine their efficacy with respect to the 4-sided
‘impact roller’. These are described in turn below.
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Figure 6.Rolling dynamic compaction modules: (a) 3-sided (Landpac); (b) 4-sided (Broons); (c) 5-sided (Landpac).

2.3.1 4-sided impact roller — ANNs

The performance of RDC is generally assessed by means of in situ tests, such as the CPT and the dynamic cone
penetration test (DCP). Other techniques are also used, such as surface settlements, in situ density measurements,
and geophysical methods. Since the mid-1980s, Broons (www.broons.com) has acquired a significant
database,from a wide range of projects involving the use of the 4-sided, 8-tonneimpact roller module (Fig. 6c¢),
which includes many in situ tests in a variety of soil types and ground conditions.These data were exploited to
develop both ANN and GP models.

Ranasinghe et al. (2017a) developed a database incorporating 2,048 DCP records from 12 separate projects.
These data were subsequently sub-divided into the training (64%), testing (16%) and validation (20%) sets. The
database consisted of 5 input variables: (1) soil type, eitherSand—clay, Clay—silt, Sand—none,or Sand—gravel
(indicating primary and secondary soil components); (2) average depth below the ground surface, D(m); (3)
initial number of module passes; (4) initial DCP count (blows/300 mm); and (5) the final number of roller
passes. The single output variable was the final DCP count (blows/300 mm) at depth D after compaction. After
trial-and-error, the optimal ANN model consisted of 8 input nodes, a single hidden layer containing 4 nodes, and
the single output variable node, as shown in Figure 7.1t is important to recall that the DCP suffers from many
uncertainties, and as such, is not a precise measurement instrument. In addition, the soil type parameter is also
somewhat imprecise. With this in mind, as can be seen from Figure 8, the optimal ANN model performs
reasonably well, with an r = 0.79, RMSE = 7.54 (blows/300 mm) and MAE = 5.59 with respect to the
validation set.

As the optimal model is parsimonious in nature, again a tractable equation can be derived, as:

102.5 69 5)
1+ exp (2113 Ty + 2.307 Ty + 3.725Ty; + 3.163 Ty, — 2.269)

DCPfing =

where:
Ty = [1 + exp (3.1281, + 5.2571, — 1.2161; + 0.9731, + 0.99]5 + 0.04I; — 0.1771, — 0.00614 + 7.424)]"*
Tyo = [1 + exp (2.2911; + 2.2251, + 3.2061; — 7.351, + 0.985I5 — 0.028I, + 0.165I, — 0.048I + 0.059)]
Ty, = [1+ exp (—0.082I, — 1.678I, + 0.0141; + 1.8691, — 13025 — 0.031] + 0.0171, + 0.012] + 0.757)]~*
Ty, = [1+ exp (—1.4861, + 0.7431, — 1.48215 + 0.3011, + 1.74915 + 0.0231, + 0.0531, + 0.002Ig — 0.517)]"*
and: I; are the input variables, such that: I; to I, are binary values (0 or 1) dependent on the soil type (e.g. for a
Sand—clay: ;= 1,1, = 0, I; = 0 and I, = 0); I =average depth, D (m); [, =the initial of number roller
passes;[,; =the initial DCP count (blows/300 mm); and I3 =the final number of roller passes.

A sensitivity analysis performed on the optimal ANN model indicated the importance of the input variables
as follows (ranked most to least important): (1) soil type; (2) initial DCP count; (3) average depth; (4) initial
number of roller passes; and (5) the final number of roller passes.
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(Ranasinghe et al. 2017a).

2.3.24-sided impact roller — GP

Ranasinghe et al. (2017b) used CPT measurements,from 1,977 data records from Broons’ archive of RDC
projects, to develop a genetic programing (GP) predictive model. The database consists of 103 CPT soundings,
with CPT measurements up to 4 m in depth and sampled at 0.2 m vertical intervals. The GP model incorporated
4 input variables — the depth of the CPT measurement (D), the cone tip resistance (q.;) and sleeve friction (f5;)
prior to compaction, and the number of roller passes (P) — and a single output variable,the cone tip resistance
after P roller passes (q.r). Unlike the ANN model described in §2.3.1, the CPT model does not require a
separate soil type input parameter, as this is provided indirectly through the well-established
ratiobetweenfy;andq,;, via the friction ratio.

In order to develop the GP model, the entire dataset wassubdivided into two sets: a training dataset
(consisting of 1,755 records from 91 CPT soundings, i.e. 80% of the data) and a validation dataset (consisting of
222 records from 12 CPT soundings, i.e. 20% of the data). As with the ANN modeling described above, the
training dataset was used to train and verify the GP model during the modeling phase, andthe validation dataset
is withheld from the model, and deployed only after the model has been developed.

The commercial software suite Discipulus version 5.2 (Francone 2010) was used to develop and refine the
GP model. Like Neuframe described above, Discipulusalso seems to be no longer available. As can be seen from
Figure 9, the GP model performs very well, as also indicated by r = 0.87, RMSE = 4.03 (MPa) andMAE =2.71
with respect to the validation set. Using the same datasets, Ranasinghe et al. (2019a) developed an ANN model,
and Ranasinghe et al. (2017b) showed that the GP model slightly outperformed its ANN counterpart.



In order to further validate the performance of the GP model and compare it against that of the ANN model
by Ranasinghe et al. (2019a), Ranasinghe et al. (2017b) examined a new, additional dataset, unseen by either
model. The results from a selection of the projects, involving complete CPT soundings, are shown in Figure 10.
Whilst not perfect, the Al models perform reasonably well and provide useful for tools preliminary design

purposes.

D (m)

So that the GP model can be disseminated, Discipulusincorporates afeature to export the final GP model as a
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Figure 9.Performance of optimal GP model with respect to the: (a) testing set; and (b) validation set
(Ranasinghe et al. 2017b).
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Figure 10.Performance of GP and ANN models on new, unseen data (Ranasinghe et al. 2017b).

C-program, and Ranasinghe et al. (2017b) included the C code for their GP—CPT model.

3 Benefits and Limitations of ANNs and GP

Like almost everything, artificial intelligence in geotechnical engineering has several benefits, but also a number

of limitations. This section briefly explores both.

3.1 Benefits

As geotechnical engineering deals with materials which, by their very nature, can exhibit extreme variability,
Alis particularly well-suited to modeling the complex behavior of these materials, and have generally
demonstrated superior predictive performance when compared with traditional methods.As Al is data driven, it
does not need prior knowledge about the nature of the relationship between model inputs and their corresponding
outputs, as Alsolely use the data to capture this relationship. By examining 1,235 papers published since 1992 on
Al applications to 9 sub-disciplines of geotechnical engineering, Baghbani et al. (2022) concluded that Al
methods have yielded successful and promising results when solving geotechnical engineering problems. Shahin
et al. (2009) concluded that Al is able to capture the subtle functional relationships among the presented data,
even if the underlying relationships are unknown or the physical meaning is difficult to explain.Several
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researchers (e.g. Shahin 2003) stated that ANNs are able also to accommodate noisy data, to some degree,
without degradation in predictive capability.

3.2 Limitations

The main criticisms that are levelled to Al are that they require large amounts of data, and they lack transparency
and, hence, are often seen as black boxes. Further to these, Jaksa et al. (2008) and Shahin et al. (2009) discussed
several issueswith ANNs that require attention in the future. These included: (i) ensuring that the developed
models are robust; (ii) improving extrapolation ability; and (iii) dealing with uncertainty.

With regards to lack of transparency, this is often true, as the vast majority of papers presenting Al
applications in geotechnical engineering do not provide access to the final Al model. Baghbani et al. (2022)
stated that, despite the large number of studies undertaken, Al applications in geotechnical engineering have not
been effectively transferred from research to practice. They suggest that one of the reasons for this is the lack of
familiarity, and thereby confidence, within geotechnical engineering community to use Al based predictions.
However, in the author’s opinion, this is largely due to the lack of transparency. As has been discussed above,
through the use of tractable relationships, such as those presented in Eq. (3)—~(5), and the C code provided by
Ranasinghe et al. (2017b), the Al models are transparent, relevant and accessible to the geotechnical engineering
profession.

The issue of robustness is an important one and is often ignored in most of the published Al papers. Here,
robustness is defined as the ability of the model to generalize over a range of data similar to that used for model
training (Shahin et al. 2009). This is assessed by examining the predictions of the ranges of each of the input
variables, as detailed by Shahin et al. (2005c). Authors of Al studies often only present measures of fitness, and
subsequently conclude that their model is optimal. However, as Shahin et al. (2005¢c) highlight, this may not
always be the case.

It is generally accepted that ANNs perform best when they are used to interpolate within the ranges of the
input variables used for calibration (Tokar and Johnson 1999); that is, training. Whilst this is similar to other
models, it is nevertheless an important limitation of ANNS, as it restricts their usefulness and applicability. Like
other statistical techniques, machine learning models can be re-trained, and therefore improved, as new data
become available.

Finally, a further limitation of ANNS is that the uncertainty in the predictions generated is seldom quantified
(Maier and Dandy, 2000). Failure to account for such uncertainty makes it very difficult to assess the quality of
the ANN predictions, which severely limits their efficacy. In an effort to address this, a few researchers have
applied Bayesian techniques to ANN training. For example, Goh et al. (2005) observed that the integration of the
Bayesian framework into the backpropagation algorithm enhanced the neural network prediction capabilities and
provided assessment of the confidence associated with the network predictions. Shahin et al. (2005a, b) also
incorporated uncertainty in the ANN process by developing a series of design charts expressing the reliability of
settlement predictions for shallow foundations on sand.Since then, many researchers have applied Bayesian
theory to Al (e.g. Hu et al. 2015, Tang et al. 2018, Hasanpour et al. 2020).

4 Conclusions

This paper haspresented the application of artificial neural networks (ANNs) and genetic programing (GP) to a
number of geotechnical engineering problems and demonstrated their efficacy, as well as the processes for
obtaining optimal models. Four examples have been presented: the prediction of the settlement of shallow
foundations on sand using ANNs, the load-settlement behavior of pile foundations using ANNs, and the
improvement in the ground due to rolling dynamic compaction using ANNs and GP. In each of these examples,
the Al technique provided superior predictions to those of any other currently available method. In three of the
four examples given, the optimal modelswere translated into, either a tractable equation, or as a C-language
program, making them accessible for use in geotechnical engineering practice.

Lastly, the benefits and limitations of Al have been discussed. It is concluded that Al presents alternative
and reliable methods for predicting geotechnical response in a wide range of ground conditions and applications.
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