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At the European Space Agency (ESA), Modeling and Simulation (M&S) plays a fundamental role during the 
lifetime of a spacecraft, being used from the design phase to the testing and during operations in space. In particular, 
the European Space Operation Center (ESOC) makes use of M&S tools for various tasks such as monitoring and 
control, procedure validations, training, maintenance, planning and scenarios investigation, to mention a few. 
Moreover, moving towards the digital twin paradigm, simulation models are gaining growing attention with the 
expectation to provide ultra-fidelity capabilities to represent the live status and dynamics of flying spacecraft. In this 
respect, M&S tools embed general physics-based models and disciplines characterized by configurable parameters 
which have to be calibrated in order to mimic the behavior of the actual flying spacecraft. However, their calibration 
requires a large number of simulations which are unfeasible to be obtained through computationally expensive high-
fidelity simulation models. In this light, the present work proposes the use of a surrogate model-based approach for 
the calibration of simulation models of spacecraft. The approach integrates a computationally inexpensive deep-
learning-based surrogate model. The approach’s effectiveness is shown by its application to real flying Earth 
observation satellite data and simulation models. 
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1. Introduction 
The use of Modeling and Simulation (M&S) tools 
plays a vital role in the design, testing, and 
operations of European Space Agency (ESA) 
spacecraft (Crues et al., 2022). In particular, the 
European Space Operations Center (ESOC), the 
primary ESA mission control and operation 
center, employs M&S tools for various tasks, 
including monitoring and control, procedure 
validations, training, maintenance, planning, and 
scenario investigations (Pantoquilho et al., 2017). 

Also, M&S is recently gaining traction, with the 
expectation of providing ultra-fidelity capabilities 
to represent the live status and dynamics of flying 
spacecraft and leading, eventually, to the 
development of spacecraft digital twins, which 
are dynamic and self-evolving digital replicas of 
spacecraft representing their exact status and any 
given point in time and able to enable diagnostics, 
prognostics, decision making and automation 
(Thelen et al., 2022). Digital twin-based 
simulation tools incorporate general physics-
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based models and configurable parameters that 
need to be calibrated to mimic the behavior of 
actual flying spacecraft (Ward et al., 2021). Thus, 
by adjusting the simulation model's parameters to 
match the real-world system's behavior, model 
calibration allows i) creating of more accurate and 
reliable digital twins, ensuring that simulation 
models faithfully reflect the behavior of the real-
world system; ii) identifying and resolving 
discrepancies between the simulated and real-
world behavior of a spacecraft, avoiding 
unexpected results and costly errors, which can 
have severe consequences for spacecraft 
missions; iii) adapt M&S tools to simulate the 
spacecraft behavior under a wide range of 
conditions, by optimizing the configurable 
parameters reflecting the environmental and 
condition situation (Ward et al., 2021; Tian et al., 
2022).  

The calibration of complex high-fidelity models 
simulating spacecraft behavior and operations, 
such as digital twins, rely on computationally 
expensive high-fidelity simulation models; 
therefore, their direct use for calibration 
techniques requiring a large number of 
simulations is unfeasible (Sapkota et al., 2022). In 
this light, the use of surrogate models, which are 
simplified approximations of more complex 
simulation models, has gained attention in recent 
years as they have shown to provide efficient and 
accurate alternatives to traditional methods for the 
calibration of complex models (Antonello et al., 
2023; Radaideh & Kozlowski, 2020). 
Surrogates approximate the response surface of 
the simulation model in a lower-dimensional 
space, allowing for faster and computationally 
inexpensive simulations (Benner et al., 2015). 
Concerning model calibration, surrogates have 
been adopted in (Sapkota et al., 2022) to calibrate 
the configurable parameters of a digital twin. 
They used a polynomial regressor to surrogate a 
complex and time-consuming simulation model 
of cathodic protection for underwater metallic 
infrastructures. The developed surrogate is then 
used in an exploratory search to find the optimal 
set of configurable parameters. Similarly, (Song 
et al., 2022) proposed an online calibration of a 
digital twin of a nuclear power plant. They used 
digital twin simulated data to develop an ANN-
based surrogate model, which is then used to find 
the optimal set of configurable parameters 

reducing the error in the difference between 
digital twin simulations and experimental data. 
Finally, (Tian et al., 2022) presented the use of an 
ANN surrogate of an aero propulsion system 
simulation and a reinforcement learning 
framework to calibrate key model parameters. It 
is worth noticing that the works mentioned above 
provide successful examples of surrogate models 
for complex simulation model calibration. 
However, up to the authors’ knowledge, such 
approaches have not yet been investigated for the 
calibration of simulation models of real flying 
spacecraft.  

This work proposes a method for using surrogate 
models to calibrate complex simulation models of 
spacecraft. The method used DNN-based 
surrogate models, which are trained to replicate 
spacecraft simulations models and have been 
selected for their proven advantages with respect 
to ROMs and other ML-based surrogates 
(Tripathy & Bilionis, 2018).  

The effectiveness of the proposed method is 
shown by means of its application to a simulation 
model and real data of a battery of a flying Earth 
observation satellite operated at ESOC.  

The remainder of the paper is as follows: Section 
2 presents the spacecraft battery case study. 
Section 3 describes the proposed method and 
introduces the considered DNN and GA. Section 
4 presents and discusses the obtained results. 
Finally, Section 5 gives some conclusions.  

2. Earth Observation Satellite Battery 

The monitoring and study of the Earth's 
environment, climate, and natural resources are 
essential, and Earth observation satellites play a 
crucial role in this. These satellites come 
equipped with a variety of sensors and 
instruments that, while orbiting around Earth, 
gather data on several environmental factors such 
as temperature, humidity, vegetation cover, and 
ocean salinity (Melloni et al., 2018). Generally, 
Earth-orbiting spacecraft utilize Electrical Power 
Systems (EPS) equipped with both solar array 
power generation and rechargeable batteries for 
storing energy. The solar arrays supply power to 
the spacecraft bus and payload subsystems while 
also charging the batteries when exposed to 
sunlight. On the other hand, during orbital periods 
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when the spacecraft is in eclipse, the rechargeable 
batteries power all the subsystem loads on the 
spacecraft (Dalton et al., 2022). In this work, we 
consider a flying Earth-orbiting satellite battery 
and the corresponding simulation model to show 
the capabilities of the proposed calibration 
approach. 

The basic parameters usually considered to 
develop a simulation model of a battery are the 
capacity , voltage , current , temperature , 
state of charge , load  and internal resistance 

, to mention a few (Acharya et al., 2019). 
Notice that, among the various configurable 
parameters of the above mathematical models, the 
capacity, , is usually considered of particular 
interest for its ability to drive the battery 
behaviour and being associated to its degradation 
(Dominguez-Jimenez et al., 2020). For such 
reasons, in this work, the capacity, , is the 
parameter to be calibrated by the proposed 
approach.  

For the satellites operated at ESOC, the 
simulation model of the battery is embedded in a 
complex operational simulator representing all 
the spacecraft subsystems and also mimicking the 
onboard computer and running an image of the 
onboard software (OBSW), which lead the 
response of the satellite to telecommands and its 
behavior under the possible operating conditions 
and modes. Notice that a significant 
computational burden characterizes such complex 
operational simulators, mainly associated with the 
complexity of the OBSW. They usually run in 
real-time (e.g., simulating one minute of satellite 
operations requires one minute of computations) 
to six times real-time (e.g., simulating one minute 
of satellite operations requires ten seconds of 
computations). Thus, running thousands of long 
simulations is unfeasible and surrogate models 
are needed to enable the use of genetic algorithms 
and other optimization tools.  

Notice finally that, for confidential and 
proprietary reasons, further details on the 
mathematical models used in the simulation 
model cannot be provided. Also, details on the 
specific satellite under analysis are not given and 
the data and results provided in this paper are 
manipulated and masked.  

3. Proposed method 

This Section describes i) the mathematical 
formulation of the problem, and ii) the developed 
DNN-surrogate model.  

3.1. Mathematical formulation of the problem 
and simulated data generation 

Let  be the set of 
 telemetry variables measured at time t, where 

 is the telemetry observation of the i-th 
variable, , and  
is the matrix describing their time evolution 
during the period T. We then consider a 
simulation model representing the evolution of 
the same set of variables for a predefined period 
of time T. let be the set 
of configurable parameters of the simulation 
model,  the model 
output, and  the set 
of simulated variables at a time t. In this light, the 
simulation model calibration consists in the 
identification of the optimal set of configurable 
parameters  which minimizes the following 
absolute error (Eq. 1) between the simulated time 
evolution of the variable of interest  and the 
corresponding telemetry observations :  

 

3.3. DNN-based surrogate model 

The development of the proposed surrogate 
model requires to i) define the simulation model 
output variables of interest, ii) identify the set of 
configurable parameters and their possible range 
of values during operations, iii) sample a 
sufficient number of sets of configurable 
variables and perform the corresponding 
simulation, in order generate a dataset to train, 
validate and test the surrogate model, iv) 
determine the input-output relationship to be 
modeled by the DNN and select the network 
architecture and hyperparameters, and v) train, 
validate and test the DNN.  

Table 1 reports the considered configurable 
parameters, with their range of values, and output 
parameters. Notice that the values and their 

 
 (1) 
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ranges have been masked and the unit of measures 
not given for confidential reasons.   

Table 1.  Simulation model input and output 
parameters 

Then, 250 sets of configurable variables have 
been sampled through the Latin Hypercube 
Sampling (LHS) strategy (Helton & Davis, 
2003) and the corresponding simulations 
performed.  

Then, in order to calibrate the capacity, , we here 
develop a DNN which, given the values of 
voltage, , capacity, , load, , at a given time t, 
and the expected current at the t+1,  predicts 
the voltage at the t+1, . Table 2 gives the 
details of the considered DNN architecture, along 
with the hyperparameters, which have been 
chosen through a trial-and-error process. The 
available data has been scaled using a traditional 
min-max scaler, and the models have been trained 
on 70% of the simulations while being validated 
on 15% to calibrate the hyperparameters. The 
remaining 15% of the simulations have been used 
for testing. The training process has been carried 
out for 1000 epochs, and a callback method has 
been utilized to select the best-performing 
network on the validation dataset. The Adam 
optimizer, a first-order gradient-based optimizer 
that utilizes adaptive estimates of lower-order 
moments, has been chosen for its ease of 
implementation and computational efficiency 
(Kingma & Ba, 2015). The Exponential Linear 
Unit (ELU) activation function has been utilized 
due to its characteristic of decreasing bias by 
driving the mean activation towards zero, which 
has been shown to be effective when compared to 
other non-linear activation functions (Pedamonti, 
2015). 

Table 2. DNN architecture and hyperparameters 
Number of layers 4 

Number of neurons per 
layer 

64, 32, 32, 2 

Optimizer Adam 
Activation function Elu  
Batch size 32 
Learning rate 0.001 
Maximum training epochs 2000 

Figure 1 compares the voltage values of a 
simulation and the corresponding values 
reconstructed by the developed surrogate model 
for four different simulations of the test set. It is 
worth noticing the good agreement between the 
two models which is also proven by an overall 
Mean Squared Error (MSE) of  on the 
scaled test set. It is worth also noticing that each 
simulation run requires 2,040 seconds for a total 
of 510,000 seconds to generate the entire dataset, 
whereas the training of the DNN requires 943 
seconds on an Intel core (TM) i7 CPU@ 3.6 GHZ, 
16 GB RAM. On the other hand, given the trained 
DNN, the computational time required to 
reconstruct the entire transient, which is the term 
of reference for surrogate model performances, is 
a few seconds.  

Figure 1. Comparison between the voltage values of a 
simulation and those reconstructed by the developed 
surrogate model for four different simulations of the 
test set. 

3.4. Workflow of the proposed method.  

Figure 2 summarizes the workflow of the 
proposed method. The first step requires the 
identification of the telemetries of interest and the 
corresponding simulation model configurable 
parameters which drive their evolutions in time. 
The second step involves the sampling the of sets 

Configurable 
variables 

Range  Output variables 

Initial State of 
Charge ( ) 

[0-
100] 

Current (  

Battery Capacity 
(  

[0.5-2] Voltage ( ) 

Load  [-3,3] 
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of configurable variables for generating the 
simulations which are used in the third step to 
develop and train the metamodel. In the fourth 
step the real telemetries are acquired, and the 
developed surrogate model is to run tens of 
thousands of simulations in order to identify the 
optimal set of configurable variables which 
minimizes the difference between the simulated 
and the real telemetries.  

Figure 2. General workflow proposed method. 

4. Results 
Figure 3 shows the comparison between the 
voltage values monitored by the telemetries and 
the values reconstructed by the surrogate model 
before the capacity calibration and when the 
parameter has been calibrated. It is worth noticing 
the larger correspondence between the values 
when the model is calibrated, which highlights the 
effectiveness of the proposed approach.  

Figure 3. Comparison between the voltage values 
monitored by the telemetries and the values 
reconstructed by the surrogate model before the 
calibration of the capacity and when the parameter has 
been calibrated. 

The proposed calibration approach has also been 
applied to datasets collected in different periods 
of time, in order to analyze possible degradation 
mechanisms and seasonal effects. In particular, a 
total of fifteen datasets containing telemetry data 
at monthly intervals have been analyzed. Figure 4 

shows, for four of the considered datasets, the 
comparison between the voltage values monitored 
by the telemetries and the values reconstructed by 
the surrogate model. The good correspondence 
between the real monitored telemetries and the 
reconstructed values shows the capability of the 
proposed approach to be used to calibrate 
configurable parameters in different operating 
conditions. 

Figure 4. Comparison between the voltage values 
monitored by the telemetries and those reconstructed 
by the surrogate model for four different datasets. 

5. Conclusions 

The paper proposes a surrogate model-based 
approach for the calibration of configurable 
variables of spacecraft simulation models. The 
approach integrates a computationally 
inexpensive deep-learning-based surrogate model 
and a metaheuristic optimization algorithm to 
identify the optimal values of the configurable 
parameters. This approach is particularly relevant 
in the context of the digital twin paradigm, where 
simulation models are gaining attention with the 
expectation of providing high-fidelity capabilities 
to represent the live status and dynamics of flying 
spacecraft. The proposed approach offers a 
computationally efficient and effective solution to 
the computational burden requires to calibrate 
such high-fidelity simulation models, improving 
their accuracy and reliability, which is critical for 
the design, testing, and operations of spacecraft.  

The effectiveness of the approach is demonstrated 
by its application to a real flying Earth 
observation satellite. The results show i) the 



2556 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

capabilities of the approach to replicate the high-
fidelity spacecraft simulation model with a 
computationally cheaper but accurate surrogate 
model; ii) the effective configurable parameter 
calibration, which improves the simulation 
model's adherence to actual monitored data; and 
iii) the ability of the approach to be applied to 
different datasets with different operating 
conditions, which increases its versatility and 
applicability.  

In summary, the proposed approach offers a 
promising solution to the challenge of calibrating 
high fidelity simulation models more efficiently 
and effectively, with the potential to improve the 
accuracy, reliability and predictive capabilities of 
simulation models.  
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