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This paper proposes a single branch transfer learning method with the noise reduction attention mechanism for 
cross-domain fault diagnosis of rolling bearing. First, adaptive batch normalization is added to the model to ensure 
its domain adaptation capability. Furthermore, to improve the model's ability that suppresses noise-related features 
in a noisy environment, the noise reduction attention mechanism is introduced. With sufficient experimental 
verifications carried out, the results support that our proposed method has satisfying performance. 
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1. Introduction 
Algorithms based on deep learning or 

machine learning are the prevalent methods in the 
development of rolling bearing fault diagnosis 
(Lei et al. 2020). An important premise of most 
existing methods is to assume that the training and 
the testing sets follow the same distribution. In 
practical industrial applications, however, general 
distribution discrepancies exist between training 
data and testing data due to variation in working 
conditions, interference of environmental noise, 
etc., which leads to a significant decline in 
diagnostic performance while using traditional 
methods. Domain shift caused by varying 
operating conditions brings new challenges to the 
fault diagnosis of rolling bearings. Recently, 
transfer learning models have been gradually 
applied to solve the problem of cross-domain fault 
diagnosis of rolling bearings. Li et al. (2021) 
proposed a two-stage transfer adversarial network 
for failure diagnosis of rotating machinery. This 
method draws on the idea of generative 

adversarial networks. Wen et al. (2019) used a 
sparse autoencoder model along with the 
maximum mean discrepancy for fault diagnosis of 
rolling bearing under different loads. Li et al. 
(2019) used the idea of generative adversarial 
networks to develop a transfer learning model for 
bearing fault diagnosis under the lack of data in 
the target domain. Wang et al. (2020) proposed a 
multi-scale deep intra-class method for dealing 
with the fault diagnosis of rolling bearings under 
different failure modes. The above methods 
provide a potential solution for solving the cross-
domain fault mode diagnosis but are only able to 
fix a percentage of the problems by far. 

Limitations of the existing methods are still 
in demand to be solved in real-life applications. 
The above-mentioned transfer learning models 
are almost all multi-branch network models. An 
additional branch could greatly complicate the 
training of a model due to the introduction of new 
parameters and losses, which is reflected in the 
cumbersome parameter adjustment and the 
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convergence and cost of the model. For 
generative adversarial networks, the model often 
cannot enter the Nash equilibrium state because 
of the overfitting of the discriminator, and the 
performance of the model is very unstable, which 
is the main problem faced by its promotion and 
application (Jeong and Shin 2021, Salimans et al. 
2016). On the other hand, in one comparative 
experiment of rolling bearing fault diagnosis, the 
transfer learning model based on maximum mean 
discrepancy is proven to have the best 
performance, but it also costs the most 
computation (Wang, Michau, and Fink 2019). 
Another problem that needs attention is the 
service environment of rolling bearings is often 
accompanied by various vibrations and 
interference. Noise will reduce the ability of the 
model to extract advanced fault features, and this 
weak point will be amplified when dealing with 
transfer tasks under different working conditions, 
resulting in an underwhelming performance. 
However, the aforesaid methods do not introduce 
a noise reduction mechanism into the model in a 
targeted manner. 

To further solve the above problems and 
explore a better algorithm for the fault diagnosis 
task of rolling bearings under different working 
conditions in a noisy environment, this paper 
proposes a new approach. The proposed method 
firstly adds an adaptive batch normalization to the 
deep network, which improves the domain 
adaptive ability of the model. Additionally, a 
noise reduction attention mechanism is 
specifically embedded in the model. This ensures 
the stability of the model so that the model can 
still learn crucial features in a noisy environment. 
The input of the proposed approach here is the 
original vibration signal, which does not require 
the additional design of hand-crafted features. 
This paper illustrates how the proposed method 
acts directly on the raw vibration signal, which 
can carry out end-to-end fault diagnosis task 
processing.  

2. The Theoretical Framework for The 
Proposed Methods 

2.1 Problem Formulation 
The mathematical expression for the domain 

adaptation in cross-domain task is defined as the 

following. Given a labeled source domain dataset
� �1 1( , ),..., ( , ) ,S s s sn sn siD x y x y y Y� � , and an 

unlabeled target domain dataset � �1,...,t t tkD x x� , 
where y represents the label of the state, and Y is 
the set of all class labels {0, ..., M}, M is the fault 
label. The labels of the target domain are missing 
during training, so the ground truth labels, for the 
purpose of this paper, are denoted as 
� �1,..., ,t tk tiy y y Y� . The intention of domain 
adaptation is to use source domain labeled data Ds 
to learn a predictive model f on the target domain, 
which makes : t tf x y�  has a smaller 
prediction error on the target domain, as shown in 
Eq. (1), 
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2.2 The Proposed Model 
2.2.1 Adaptive Batch Normalization
The Batch Normalization (BN) layer (Ioffe and 
Szegedy 2015) is used to alleviate the internal 
covariate shift problem when training deep neural 
networks. Formally, for a batch of data 
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To make BN more suitable for transfer 
learning tasks, Li et al. (2018) proposed the 
concept of adaptive batch normalization (AdaBN), 
which extends BN to domain adaptation problems. 
Inspired by the efficiency of AdaBN in the field 
of computer vision, this paper introduces AdaBN 
into the proposed model to deal with the fault 
diagnosis task of rolling bearings under different 
working conditions. The core of AdaBN is to 
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adopt domain-specific normalization for different 
domains, that is, first, to operate on the data of 
source domain Ds with BN, and then use the BN 
layer to update the corresponding statistics when 
processing the data of target domain Dt, as shown 
in Algorithm 1. 

Algorithm 1. The pseudocode of AdaBN. Adapted 
from literature (Li et al. 2018). 
For neuron j in model: 
    Collect the neuron responses  on all 
original vibration signal of Dt 
    Compute the mean and variance of Dt:  
and  respectively by Eq. (2) Eq. (3) 
end for 
for neuron j in model, testing vibration signal m in 
Dt:  
    Compute BN output  by Eq. (5) 
end for 

2.2.2 The Noise Reduction Attention 
Mechanism 

 

Figure 1. The noise reduction attention mechanism. 

To overcome the problem that the model does not 
perform well under noisy environment, this paper 
designs a noise reduction attention mechanism. 
As shown in Fig. 1, the noise reduction attention 
mechanism provides a weight threshold  for 
each channel of the feature map to filter the 
features. The input feature x will be reduced to a 
1-D vector through an absolute operation and 
global average pooling layer, next, input to the 
fully connected layer, like (Hu, Shen, and Sun 
2018). The number of neurons in the fully 
connected layer is set to be equal to the number of 
channels in the input feature map. The features 

that output of the fully connected layer will be 
scaled to (0, 1) by the following Eq. (6), 

 1
1 cc ze

� ��
�

 (6) 

where αc represents the c-th scaling parameter, 
and zc represents the feature at the c-th neuron. 
The output threshold for each channel can be 
calculated as Eq. (7), 

 , ,
,
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i j
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where i, j, and c are the indexes of the width, the 
height, and the channel of the feature map x, 
respectively, and τc is the threshold for the c-th 
channel of the feature map. It has been verified by 
(Zhao et al. 2020) that the output threshold will 
always remain a positive value throughout the 
training process, and the value range will also be 
within a reasonable range, which ensures that the 
output features keep from all being zeros. The 
model can automatically learn the  through 
backpropagation. 

After obtaining τ, the model can use soft 
threshold segmentation (Isogawa et al. 2018) to 
filter the feature map to achieve the purpose of 
removing noise-related features, as shown in Eq. 
(8), 
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here x and y represent the input and output 
features, respectively. 

2.3.3 Overall Architecture of the Proposed 
Model 

The overall architecture of the proposed 
method in this paper is shown in Fig. 2. The input 
of the model is the original vibration signal, and 
the artificial design for features is not required, 
which can accomplish end-to-end rolling bearing 
fault diagnosis. Embedding the AdaBN layer into 
the proposed model allows it to deal with transfer 
learning tasks that can realize cross-domain fault 
diagnosis of rolling bearings. The proposed model 
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does not have additional branches, and still retains 
the single-stream structure. Furthermore, the 
noise reduction attention mechanism is 
introduced into the proposed model to help it 
suppress noise-related features under noisy 
environments. By adding shortcut connections 
(He et al. 2016), the proposed method will enable 
the input signals to propagate from any bottom 
layer to higher layers, which is beneficial for the 
model to learn crucial local information and 
global information about the failure of rolling 
bearing. The output after model training is the 

fault label, and the total loss function is the cross-
entropy loss, as shown in Eq. (9),  

 
1

log( )
N

i i
i

p q
�

� �

1

N

i
i

pi� �
  (9) 

where p represents the targeted output, and ip  is 
the actual probability of an observation belonging 
to the i-th class, iq denote estimated distribution. 

 

 
Figure 2. Overall architecture of the proposed model.

3. Experimental Design and Analysis 
Two sets of experiments are conducted to 
evaluate the performance of the proposed model 
with the CWRU-bearing dataset (Smith and 
Randall 2015). Bearings in the dataset contain a 
total of 10 states, including 1 healthy state and 9 
fault states. The CWRU bearing data were 
collected under four loads, which can be 
considered as four different working conditions 
{0, 1, 2, and 3hp}. The cross-domain fault 
diagnosis from one working condition to another 
is defined as a set of transfer learning tasks. For 
example, Task 0-1 is denoted as the following: the 
source domain is work condition 0, and the target 
domain is work condition 1. The first 12,000 
points of the original vibration signal are selected 
as the total number of samples, and the 
overlapping sampling is performed to form 4,000 
training samples of length 4,096 and 800 testing 

samples of the same length in the source and 
target domains, respectively.  

The hyperparameters and structure of the 
model during the experiments are shown in Table 
1. Except for the experimental results cited in the 
literature, the models participating in the 
comparison all use the same hyperparameter 
settings. Referring to the conclusions in the 
literature (Zhang et al. 2018), a wider convolution 
kernel 64*1 is set in the first layer of the model so 
that a larger receptive field can be obtained when 
processing the original time domain information. 
The model is optimized by the stochastic gradient 
descent algorithm (SGD), the initial value of the 
learning rate is set to be 0.01, the decay 
coefficient is set to be 1e-6, and the momentum is 
set to be 0.9. In the experiment, the models were 
trained for 1000 epoch and with a batch size of 
128. 
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Table 1. Architecture and hyperparameters of the model in the experiments. 

Layer Kernel size/stride/ hyperparameters Output 
Input / [(None, 4096, 1)] 
Conv1D 64*1 / 1, relu (None, 4096, 16) 
Batch Normalization / (None, 4096, 16) 
Conv1D 5*1 / 1, relu (None, 4096, 32) 
Batch Normalization / (None, 4096, 32) 
Conv1D 5*1 / 1, relu (None, 4096, 64) 
Batch Normalization / (None, 4096, 64) 
the noise reduction attention / (None, 4096, 64) 
MaxPooling1D 2*1 / 1 (None, 4096, 64) 
Flatten / (None, 262144) 
Fully-connected 128, relu (None, 128) 
Dropout 0.5 (None, 128) 
Batch Normalization / (None, 128) 
Fully-connected 10, softmax (None, 10) 

3.1 Results and Discussion 
3.1.1 The Experiment on the CWRU Bearing 
Dataset 
Existing methods proposed in the literature were 
used for comparison with the models proposed in 
this paper, including Generative two-stage (Li, 
Zhang, and Ding 2019), DANN (Li et al. 2018, 
Wang, Michau, and Fink 2019), DAUA (Wang, 
Michau, and Fink 2021). Taking the classification 
accuracy on the test set as the evaluation index of 

performance, the comparison results of each 
method are shown in Table 2, such as 0-1, 1-0, 
and 1-2. The proposed method also achieved 100%
transfer accuracy on tasks 1-2 and 2-1. The results 
indicate that the proposed method achieved the 
highest accuracy on multiple transfer tasks among 
the five methods. Overall, the transfer accuracy of 
the proposed method on 12 tasks both all 
exceeded 95%, which shows that the proposed 
method has good applicability and stability.

Table 2. Comparison of transfer accuracy on original CWRU datasets. 

 
Generative-two-
stage(Li, Zhang, and 

i 2019)

DANN(Ganin et al. 
2016) 

DAUA(Wang, Michau, 
and Fink 2021) Our Method  

0-1 97.81 97.27±0.76 98.08±0.16 99.12 
0-2 96.02 97.86±1.72 99.56±0.18 99.50 
0-3 94.24 96.97±2.91 98.22±0.65 99.38 
1-0 97.27 97.82±0.16 98.08±0.32 99.62 
1-2 96.32 99.95±0.06 100.00±0.00 100.00 
1-3 94.59 98.93±0.36 99.20±0.19 99.56 
2-0 95.44 92.99±1.25 96.43±0.43 96.75 
2-1 96.55 97.55±0.40 97.48±0.40 100.00 
2-3 96.13 99.62±0.21 98.97±0.21 99.37 
3-0 92.82 87.89±0.53 94.85±2.16 96.49 
3-1 93.04 92.53±2.45 96.18±0.50 97.37 
3-2 95.63 99.90±0.07 99.78±0.09 99.74 

Taking tasks 0-1, 0-2, and 0-3 as examples, 
T-SNE was used to visualize output features of 
the final layer of our model proposed in this paper, 
as shown in Fig. 3. The proposed model can well 
distinguish the features between different failure 

modes in the target domain. Combining the 
analysis of the results in Table 2, further proved 
that the method proposed in this paper is feasible 
and effective in dealing with the task of cross-
domain fault diagnosis for rolling bearings. 
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(a) task 0-1                  (b) task 0-2                (c) task 0-3 

Figure 3. Visualization of the output features at the final layer with T-SNE in tasks 0-1, 0-2, and 0-3 on original 
data. 

3.1.2 The Experimental on the CWRU Bearing 
Dataset with Noise 
The purpose of this experiment is to demonstrate 
the performance of the proposed method in noisy 
environments and to validate the effectiveness of 
the noise reduction attention mechanism. By 
adding SNR -5dB, SNR 0dB, and SNR 5dB 
Gaussian noise to the original CWRU bearing 
dataset, three new noisy datasets were constructed. 
The model with the noise reduction attention 
mechanism was compared with the model without 
the noise reduction attention mechanism, and the 
hyperparameter settings were the same as in 

Experiment 1, see Table 1. For the convenience of 
representation, the model with the noise reduction 
attention mechanism is designated as M+nram, 
and the model without the noise reduction 
attention mechanism is designated as M-nram. 
The experiment results are shown in Table 3. It 
can be seen that after adding the noise reduction 
attention mechanism, the anti-noise ability of the 
model has been greatly improved. The 
experimental results show that the noise reduction 
attention mechanism in the model allows the 
model to have better performance even in noisy 
environments. 

Table 3. Comparison of transfer accuracy on noisy datasets. 

 M-nram M+nram 
 -5dB 0dB 5dB -5dB 0dB 5dB 

0-1 83.26 97.25 97.65 89.75 97.84 98.75 
0-2 80.12 98.17 98.29 89.24 98.51 99.25 
0-3 79.75 96.38 98.02 88.00 98.00 99.23 
1-0 82.93 97.11 98.12 90.87 98.73 99.62 
1-2 82.77 99.37 99.37 90.77 99.72 99.85 
1-3 84.00 93.77 94.50 89.63 98.59 99.56 
2-0 76.75 91.39 94.10 90.61 93.00 95.38 
2-1 76.25 97.33 97.61 91.11 98.31 99.87 
2-3 86.11 99.12 99.12 92.37 98.24 99.07 
3-0 75.13 87.63 89.25 85.12 95.39 96.13 
3-1 75.82 88.63 89.38 90.49 96.25 97.25 
3-2 86.62 98.66 99.13 92.62 96.38 99.33 

Taking tasks 0-1, 0-1, and 0-3 as examples, 
the transfer performance of the two model under 
different SNR noises was analyzed. The results 
are shown in Fig. 4. It can be seen that after 

introducing the noise reduction attention 
mechanism, the performance of the model under 
noise environment significantly improved. 
Additionally, with the increase in SNR, the 
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performance of the model gradually returned to 
the normal level. This phenomenon shows that 
strong noise can seriously degrade the 

performance of the model, so it is essential to 
introduce a noise reduction attention mechanism.

 

 
(a) task 0-1             (b) task 0-2             (c) 0-3 task 

Figure 4. Comparison of transfer accuracy between AdaBN and our method on noise datasets. 

Also taking 0-1, 0-2, and 0-3 as examples, 
T-SNE is used to visualize the final output of the 
model on the SNR -5 noisy dataset, as shown in 
Fig. 5. With the help of the noise reduction 
attention mechanism, the proposed model was 
capable to distinguish the failure modes of the 
rolling bearing under different working 

conditions even in a noisy environment. A 
comprehensive analysis of Table 3, Fig. 4, and Fig. 
5 shows that the performance of the model 
improved in noisy environments after introducing 
the noise reduction attention mechanism. 

 

 
(a) task 0-1                (b) task 0-2               (c) task 0-3 

Figure 5. Visualization of the output features at the final layer with T-SNE in tasks 0-1, 0-2, and 0-3 on SNR -5dB 
noise datasets. 

4. Conclusion 
This paper presents a new approach that addresses 
the aforementioned issues by introducing the 
AdaBN layer and the noise reduction attention 
mechanism into the deep network. The 
effectiveness and feasibility of the proposed 
method are verified on the CWRU-bearing 
dataset and the generated noisy dataset. In 
addition, the method proposed in this paper 

requires only a single branch and is easier to 
implement and train. And the input of the model 
can be the original vibration signal which enables 
end-to-end fault diagnosis task processing.  

In the future, the integration of AdaBN and the 
noise reduction attention mechanism into other 
models should be further investigated to verify the 
general application of the methods. 
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