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Maritime Autonomous Surface Ships (MASS) have attracted significant interest in recent years due to their 
potential to confer economic, safety, and environmental benefits. However, a key aspect of the MASS system that 
remains unclear is the scientific and reasonable design of Remote Control Centers (RCCs), which is responsible 
for remotely controlling and monitoring MASS operations. RCC design can significantly impact the performance 
of remote operators. Therefore, this study aims to investigate the impact of day-night conditions and time 
progression on the workload and fatigue level of MASS remote operators, in order to provide guidelines for RCC 
design. A remote-control simulation platform was utilised to conduct two rounds of 4-hour daytime and night-time 
remote control experiments. Physiological data were collected in real-time using various measurement instruments, 
and the Karolinska Sleepiness Scale (KSS), Reaction time (RT), and NASA Task Load Index (NASA-TLX) were 
assessed every 25 minutes. Some findings suggest that fatigue level in the night-time condition is higher than in 
the daytime condition, sleepiness significantly increased over time and reached a peak at around 1.5 hours 
(daytime) and 2 hours (night-time), before maintaining a steady level, which means day-night conditions and time 
progression can significantly impact remote control operators’ performance potentially leading to decreased 
performance and increased risk of misoperation. The study highlights the need for effective work schedules and 
interventions to improve remote control operators’ performance in MASS operations. This research takes the first 
step to the investigation of the remote control centre operator, and could provide valuable insights into the design 
of RCCs, which will improve the performance of RCC operations and ensure the safety of MASSs. 
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1. Introduction In recent years, remote work has gained 
popularity, with many companies allowing their 
employees to work from home or other remote 
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locations. However, remote work is not limited to 
traditional office settings. With the advent of 
Maritime Autonomous Surface Ships (MASS), 
remote control of ships is becoming a reality. 
MASS are ships that operate without a crew 
onboard, controlled remotely by human operators 
located onshore or by artificial intelligence 
systems. Remote control of MASS has several 
advantages, such as increased safety, cost savings, 
and reduced carbon emissions (Fraunhofer, 2016; 
Lindstad et al., 2015; Ramos et al., 2019). 

Numerous studies have investigated the 
design and implementation of MASS, focusing on 
various aspects such as navigation and control 
systems, communication, and collision avoidance. 
For example, Zhang et al. (2021) proposed a real-
time collision avoidance framework for MASS 
using B-spline and optimal decoupling control. 
Guan et al. (2022) introduced a novel offshore 
communication structure by deploying Unmanned 
Aerial Vehicle (UAV) mounted relay nodes 
between RCC and MASS and proposed an 
optimised algorithm to adapt off-shore 
communication situations. Despite these efforts, 
several challenges must be addressed before 
MASS can be widely adopted, particularly 
concerning the remote control centres (RCC). 

The adoption of MASS poses significant 
challenges, particularly in terms of the changing 
roles and responsibilities of the crew. The 
traditional roles of the crew, such as navigation 
and ship-handling, have evolved into more 
complex tasks, such as monitoring and decision-
making, requiring a higher level of cognitive skills 
and knowledge. As such, investigating the human 
factors involved in MASS navigation, including 
the crew's workload, performance, and well-being, 
is essential to ensure safe and efficient operation 
(Man et al., 2015, 2018; Stephenson et al., 2021; 
Alsos et al., 2022). 

Mental workload is one of the most 
important terms in understanding human 
performance. It is related to task demand, mental 
effort, and performance. Appropriate mental 
workload enables an operator to perform 
effectively and efficiently, while abnormal mental 
workload may lead to fatigue and even human-
induced faults, which could eventually lead to an 
accident (Young et al., 2015). 

There are many approaches assessing fatigue 
and mental workload, which can be broadly 
categorized into two main types: objective and 

subjective methods. Objective methods involve 
the measurement of physiological signals, such as 
heart rate variability, electrodermal activity, and 
reaction time, to provide an indication of fatigue 
and mental workload (Charles & Nixon, 2019). 
The Psychomotor Vigilance Task (PVT) is an 
example of an objective method that measures 
reaction time (RT) to visual stimuli. Wearable 
devices that monitor physiological signals are 
another objective approach, such as heart rate 
monitors and electroencephalogram (EEG) 
headsets (Marchand et al., 2021). Subjective 
methods involve the use of self-report measures, 
such as questionnaires or rating scales, to assess 
an individual's perception of their own fatigue or 
mental workload. Examples of subjective 
measures include the Samn-Perelli fatigue scale 
and the Karolinska Sleepiness Scale (Longo, 
2017). Both objective and subjective methods 
have their strengths and limitations and can be 
used in combination to provide a more 
comprehensive assessment of fatigue and mental 
workload. Objective methods provide an accurate 
and reliable measure of physiological changes 
associated with fatigue, while subjective methods 
allow individuals to provide insight into their own 
perceived level of fatigue or mental workload 
(Kerkamm et al., 2022) (Hancock et al., 2021).  

One area of confusion in existing studies on 
MASS is the operating mode under 24-hour full-
day operation and the shift configuration of RCC. 
The RCC is a crucial component of MASS, and 
its mode of operation needs to be optimised to 
ensure the efficient and safe operation of the 
vessel. It is unclear how various factors, such as 
day-night conditions and time progression, 
influence the workload and fatigue levels of 
MASS remote operators. Furthermore, it is 
uncertain whether an operator's time on task 
should be limited due to these factors. This study 
aims to address this gap in knowledge and 
propose a shift design that can minimise potential 
safety issues caused by fatigue and abnormal 
workloads, ensuring the safe and efficient 
operation of MASS. 

In this study, the methodology employed was 
introduced in section 2, which includes participant 
selection, equipment information, experimental 
procedures, and data acquisition and analysis. 
Section 3 provided the details about the final 
experiment data and results. In section 4, the 
implicit knowledge obtained from the acquired 
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results was discussed and unfolded. Finally, the 
conclusion was summarised, and further 
directions were proposed. 

2. Method  
In this study, a simulated remote navigation 
experiment was performed to measure the 
operators’ fatigue level and mental workload. 

2.1. Experimental setup 
Each experiment required one operator, one 
experimental testbed, and objective and subjective 
value measure equipment. When participants 
experiment, they should wear a customised 
wristband. During the experiment, they should 
complete several test batteries (the detail can be 
found in section 2.3). The equipment used during 
the experiment is listed below. 

The testbed (see Fig.1) enables the 3D 
visualisation simulation of the navigation process 
of MASS. It can simulate the real-scale 
information of ships, dynamic sea condition 
environments, and navigation information 
perception. The testbed also offers various 
encounter scenarios and working conditions and 
supports research into MASS’s track tracking, 
route optimisation, and collision avoidance 
algorithms. 

 
Fig.1. Remote control simulator 

 
The subjective method is composed of two 

scales, the NASA Task Load Index (NASA-TLX) 
and The Karolinska Sleepiness Scale (KSS). The 
NASA-TLX is a subjective assessment tool that 
measures perceived workload and mental 
demands. It was developed by NASA in the 1980s 
to evaluate the workload of pilots and astronauts. 
The NASA-TLX consists of six subscales, and 
respondents rate each subscale on a 0-10 scale, 
with higher scores indicating a greater perceived 
workload. It is widely used for assessing 
workload in various industries and domains, 

including human factors research and usability 
testing (Hart, S. G., & Staveland, L. E., 1988). In 
addition, the KSS is a subjective measure of 
sleepiness and alertness. It was developed at the 
Karolinska Institute in Sweden as a simple and 
quick tool for assessing sleepiness in research and 
clinical settings. The KSS consists of a 9-point 
Likert scale, with higher scores indicating greater 
sleepiness. It has been used extensively in sleep 
research and has also been applied in various 
industries to evaluate the impact of sleepiness on 
performance and safety (Åkerstedt, T., & Gillberg, 
M., 1990). 

Regarding objective measurement equipment, 
this study adopted the physiologic signal 
acquisition customised designed wristbands 
(Ergosensing, China) (see Fig. 2), and further 
details can be found in the work by Zhang et al. 
(2021). In this device, the galvanic skin response 
(GSR) signal was acquired by surface electrodes 
with conduct gels at a sampling rate of 40Hz with 
a resolution of 0.01 S. photoplethysmography 
(PPG) was measured at a sampling rate of 20Hz 
with the reflected green light of 532 nm 
wavelength. PPG and GSR are two non-invasive 
physiological signals that can be used to measure 
HR and HRV. PPG measures blood volume 
changes, while GSR measures skin conductance 
related to sympathetic nervous system activity. 
The use of PPG and GSR to measure HR and 
HRV has gained popularity due to their ease of 
use and non-invasive nature. 

Fig.2. Physiologic signal acquisition device 
 

Besides, we tested the RT of participants 
with customised software which could deliver a 
visual and auditory stimulus. 

2.2. Experiment procedure 
The experimental procedure was inspired by the 
recent work of Glaros et al. (2021) and Li et al. 
(2022). Participants completed two 4-hour 
simulation navigation in randomised order, one 
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beginning in the morning and another at night. Six 
participants had their two simulations on different 
days to ensure their best work conditions.  

Participants were recruited openly, and 
before the commencement of the experiment, they 
were provided with a detailed explanation of the 
simulation’s purpose and navigation plan. 
Participants were also informed that they could 
withdraw from the experiment at any time. 
Caffeine intake was recorded for all participants, 
including the type and timing of consumption 
before the experiment. At the beginning of the 

experiment, a baseline cognitive test battery was 
administered to participants, repeated every 25 
minutes throughout the experiment. Eight test 
batteries (excluding the baseline assessment) were 
administered to participants until the completion 
of the navigation plan. During each test battery, 
participants were relocated to an isolated meeting 
room to minimise distractions while a designated 
mentor monitored the experiment and provided 
any necessary assistance. The whole procedure 
timeline is shown as below Table 1. 

Table 1. Experiment procedure timeline.

Participants were asked to complete NASA-
TLX, KSS, and RT tests when performing the test 
battery. At first, participants rated their sleepiness 
level using KSS, a nine-point Likert scale ranging 
from 1 = extremely alert to 9 = fighting sleep. 
Secondly, participants rated their workload on a 
NASA-TLX, a multidimensional scale designed 
to obtain estimates of the workload from operators. 
Participants completed a baseline assessment of 
workload prior to both simulation sessions to 
create individual weighted ratings. This consisted 
of a 15-item comparison in which participants 
were asked to compare which workload 
characteristics were more demanding. Each 
workload domain (i.e., Mental, Physical, and 
Temporal demands, and Frustration, Effort, and 
Performance) was weighted against an 
individual’s perceived ratings. Finally, 
participants need to complete a RT test. The 
software comprises three reaction time tests: a 
simple RT test, a selective RT test, and an 
auditory RT test. In the experiment, the 
participants were administered the tests in the 
same order. For each round, the simple response 

test and the auditory response test stimuli were 
presented five times, while the selected response 
test stimuli were presented 10 times at random. 
The software would record the information of 
each participant and the corresponding 
experimental results. 
 
2.3. Data analysis 
In contrast to the experiment equipment, the 
acquired data could be divided into two parts:  

 Subjective data: including NASA -TLX and 
KSS scale. 

 Objective data: RT record and ECG 
characteristics such as RMSDD, SDNN, and 
IBI. 

This study aimed to investigate the impact of 
two key factors – time progressing and day-night 
condition on the fatigue and workload 
experienced by remote control operators. To 
achieve this objective, we conducted two distinct 
data analyses. 

On the one hand, we performed an ANOVA 
on RT data to observe the difference between day 

Stage Baseline test Stage 1 Test 1 Stage 2 Test 2 

Daytime 7:55-8:00 8:00-8:25 8:25-8:30 8:30-8:55 8:55-9:00 

Nighttime 18:55-19:00 19:00-19:25 19:25-19:30 19:30-19:55 19:55-20:00 

Stage  Stage 3 Test 3 Stage 4 Test 4 

Daytime 9:00-9:25 9:25-9:30 9:30-9:55 9:55-10:00 

Nighttime 20:00-20:25 20:25-20:30 20:30-20:55 20:55-21:00 

Stage Stage 5 Test 5 Stage 6 Test 6 

Daytime 10:00-10:25 10:25-10:30 10:30-10:55 10:55-11:00 

Nighttime 21:00-21:25 21:25-21:30 21:30-21:55 21:55-22:00 

Stage Stage 7 Test 7 Stage 8 Test 8 

Daytime 11:00-11:25 11:25-11:30 11:30-11:55 11:55-12:00 

Nighttime 22:00-22:25 22:25-22:30 22:30-22:55 22:55-23:00 
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and night conditions, including simple RT data, 
selective RT data, and auditory RT data. In 
addition, we calculated the weighted average for 
each participant’s NASA-TLX ratings and 
compared the differences between the daytime 
and nighttime simulations. We also processed the 
KSS scale results. Random effects for all samples 
were considered in this study. All calculations 
were conducted using SPSS 26 on a Windows 11 
Pro (22H2) operating system. 

On the other hand, the physiological signal 
acquisition device can produce several filtered 
characteristics of heart rate (HR) and heart rate 
variability (HRV), such as the interval between 
intervals (IBI), the standard deviation of 
successive inter-beat intervals (SDNN), and root 
mean square difference of successive inter-beat 
intervals (RMSSD). This study analysed the 
relevance of all pertinent characteristics with the 
day-night condition and cognitive performance 
changing over time. 

3. Case study 

3.1. Participants 
Ten individuals were trained to operate a remote 
control navigation simulation, and all were 
subsequently invited to participate in the data 
collection phase. Since facing challenges in 
recruiting female volunteers for the full-day 
simulation, informed consent was obtained from 
six male volunteers who met the inclusion 
criteria. All participants were postgraduates of 
the navigation profession at the authors’ 
institution, with a mean age of 24.8 (±2.28). 
Each participant self-reported having normal 
colour vision and hearing function. Additionally, 
all participants had a sufficient level of 
knowledge in navigation, given that they had a 
background in navigation studies. 

3.2. Navigation task 
Participants were responsible for remote 
controlling and managing a 4-hour sustain 
navigation under a day (8:00-12:00) and night 
(19:00-23:00) conditions. The navigation plan 
was bonded with realistic conditions: departure, 
straight-line sailing, encountering with another 
ship, obstacle avoidance, and arrival. Weather 
changes are also incorporated to ensure realistic 
conditions. Besides, the simulation environment 

was set on the Shenzhen Yantian Port, which 
ranks fourth globally regarding container 
throughput by 2022. 

The four-hour navigation plan entails the 
operation and management of a 3000TEU 
container ship (TEU is a measure used in shipping 
to denote the cargo-carrying capacity of a 
container ship, equivalent to 3000 twenty-foot-
long containers or their equivalent volume). 
During the simulation, participants observe a 3D 
model of Shenzhen Yantian Port and the sea, 
expecting to ensure the ship’s safety. Specifically, 
participants must depart from the port and sail 
along the coastline for two hours, followed by a 
return trip to the port in the remaining two hours. 
Throughout the exercise, participants are exposed 
to several events every thirty minutes, including 
encountering another ship, avoiding a beacon, and 
weather changes from sunny to drizzly or drizzle 
to heavy rainfall, among others. Judged by the 
weather condition and required operation content, 
the task complexity is rated as arrival (stage 8), 
departure (stage 1), straight-line sailing under 
thunderstorm (stage 4), straight-line sailing on 
heavy rainfall (stage 3 and 5), and straight-line 
sailing under drizzle (stage 2 and 6 and 7). 

The test navigation plan route with weather 
conditions can be found in Fig 3, and all the 
participants were informed to follow the 
navigation plan. 

Fig.3. Navigation plan in the simulation 

4. Results 

4.1. Scale and RT data 
4.1.1. Scale and RT data with day-night 
condition 
Before analysing the retrieved data, the outlier 
data other than 3 times the standard deviation 
was removed. The ANOVA results showed 
significant differences between the daytime and 
nighttime conditions for NASA-TLX score(p
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0.05). The night condition (M=43.85, SD=10.50) 
is significant higher than the day condition 
(M=35.90, SD=6.08). Participants rated their 
KSS score as significantly sleepier during the 

night simulation (M = 4.72, SD = 1.84), 
compared to the day simulation (M = 2.88, SD 
=1.83, p < 0.001). 

Fig.4. NASA-TLX (a) and KSS (b) scale result by task number. Error bars represent standard deviation

 

Fig.5. The simple (a), auditory (b), and choice (c) RT result by task number. Error bars represent standard 
deviation

The ANOVA results showed that there 
were no significant differences between the 
simple RT in day and night condition (p 0.05). 
However, the auditory RT appeared an 
significant difference between day-night 
condition (p 0.05). The night condition 
(M=536.34, SD=158.35) is significantly higher 
than the day condition (M=474.63, SD=129.41). 
Besides, the choice RT was also reflect an 
significant difference (p 0.05). The night 
condition (M=533.27, SD=149.38) is 
significantly higher than the day condition 
(M=489.13, SD=100.26). 

4.1.2. Scale and RT data with time progressing 
The plotted data reveal several trends. Firstly, 
workload and did not significantly increase or 
decrease with time progressing during either 
simulation. Secondly, Sleepiness (KSS score) 
significantly increased over time and reach the 
peak at task 3 (around 1.5h), and then 
maintained a steady level. Thirdly, mean 
auditory RT significantly increased over time 

during the night simulation, while the day 
simulation reflected a decrease trend. 

4.2. Physiological data 
4.2.1. Physiological data with day-night 
condition 
The extracted IBI, SDNN, HR, and RMSDD 
data were grouped into daytime and nighttime. 
Descriptive statistics for each group are 
presented in Table 2, including the number of 
data, minimum value, maximum value, mean, 
and standard deviation. 

Table 2. Description statistics of characteristics. 

Data N Min Max Mean Std 

IBI_M 195 540.41 880.78 784.97 41.93 

IBI_N 188 613.44 855.65 746.45 53.26 

HR_M 195 68.30 112.25 77.06 4.90 

HR_N 188 70.41 98.33 81.12 5.96 

SDNN_M 195 26.93 91.19 52.98 9.72 

SDNN_N 188 20.77 76.90 45.76 12.03 

RMSSD_M 195 15.83 69.49 41.91 9.13 

RMSSD_N 188 19.23 70.82 40.362 10.36 
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To test whether there were statistically 
significant differences in each feature between 
the daytime and nighttime groups, homogeneity 
of variance and normality were first checked. If 
the data met the normality assumption, ANOVA 
was performed. 

Four sets of P-P plots were generated using 
SPSS, as shown in Fig 6. All P-P plots showed 
approximately diagonal lines, indicating 
normality of the data. 

 

Fig.6. P-P plots of IBI (a), SDNN (b), HR (c), and 
RMSSD (d) 

The ANOVA results showed significant 
differences between the daytime and nighttime 
conditions for IBI (P < 0.001), SDNN (P < 
0.001), and HR (P < 0.001), but not for RMSSD 
(P > 0.05). As shown in Table 1, the values of 
IBI and HR values were significantly higher 
during the daytime compared to nighttime, while 
SDNN values were significantly higher during 
the daytime than at nighttime. 

4.2.2. Physiological data with time progressing 
According to the experimental design, each 4-
hour session comprised 8 stages of varying task 
difficulty. This study produced graphs of the 
temporal changes in IBI, SDNN, RMSSD, and 
HR with respect to the diurnal cycle. 

 
Fig.7. The IBI (a), SDNN (b), HR (c), and RMSSD (d) 
means by task number. Error bars represent standard 

deviation 

As is shown in Fig 7, the plotted data reveal 
several trends. Firstly, the daytime IBI values 
were generally greater than those at night, and 
both followed a similar pattern of initial increase 
followed by a gradual decrease towards 
stabilisation. The maximum value for daytime IBI 
was observed at around 1.5 hours, while the peak 
for nighttime IBI occurred at approximately 2 
hours. Secondly, the SDNN trend was completely 
opposite between night and day, displaying a slow 
decline followed by a rise during daytime, and a 
sharp increase followed by a decline during 
nighttime. Thirdly, there was no significant 
difference between daytime and nighttime 
RMSSD values. Lastly, the nighttime HR values 
were generally higher than their daytime 
counterparts. Both displayed a pattern of initial 
decrease followed by a return to a stable level, 
with the nighttime decrease being more 
pronounced. 

5. Discussion 

5.1. Scale and RT data 
According to the Scale and RT data, the study 
found that workload did not significantly 
increase or decrease with time during either 
simulation, but sleepiness significantly increased 
over time and reached a peak at around 1.5 hours, 
before maintaining a steady level. The study also 
found that the auditory RT and choice RT were 
significantly higher during the night condition, 
indicating that participants took longer to 
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respond to auditory stimuli and make decisions 
during this condition. The findings suggest that 
remote control operators may experience higher 
workload and sleepiness during night conditions, 
which could impact their performance.  

The study highlights the importance of 
monitoring and managing operator fatigue to 
ensure safe and effective remote control 
operations. Besides, further analysis is necessary 
to uncover the underlying causes behind the 
observed trends, which can provide insights into 
how to mitigate the negative effects of remote 
operation in day-night conditions over time. 

5.2. Physiological data 
Regarding Physiological data, the study found that 

several factors may contribute to the observed 

trends in HRV during daytime and nighttime work 

shifts.   

i. The higher daytime IBI values compared to 
nighttime may be influenced by the 
circadian rhythm and the parasympathetic 
nervous system's increased activity during 
the day. The pattern of initial increase 
followed by gradual decrease towards 
stabilisation may be due to the effects of 
workload on the autonomic nervous system. 
Besides, the peak in daytime IBI at 
approximately 1.5 hours and nighttime IBI 
at around 2 hours may be due to the 
variations in autonomic nervous system 
activity and hormonal secretion that follow 
a circadian pattern (Reyes et al., 2013, 
Buchheit, M, 2014, Koenig et al., 2014).  

ii. The opposite trends in SDNN between night 
and day may be due to the effects of the sleep-
wake cycle on the autonomic nervous system, 
with a slow decline and rise during the day 
reflecting increased parasympathetic activity 
and the sharp increase and decline during the 
night reflecting sympathetic activation 
(Chouchou and Romanella, 2014). 
Additionally, environmental factors such as 
light exposure, noise, and temperature may 
also influence HRV and contribute to the 
observed trend (Schnell et al., 2013). 

ii. The lack of significant difference in RMSSD 
values between daytime and nighttime may 
suggest that this measure is not sensitive to 
circadian variations or workload demands and 

may be more reflective of overall 
parasympathetic activity.  

iv. The observed higher nighttime heart rate (HR) 
values and more pronounced nighttime 
decrease could potentially reflect the effects 
of sleep and changes in sympathetic activity 
during different stages of sleep (Burgess et 
al., 1997). 

Remote control operators of MASS could 
benefit from these findings by being made aware 
of the potential impact of their workload and 
circadian rhythms on their heart rate variability. 
Operators could take measures to reduce their 
workload during peak workload periods, such as 
taking short breaks or rotating tasks, to help 
maintain stable HRV levels. The observed trends 
in HRV during nighttime work shifts could also 
have implications for the scheduling of remote 
control operators. Operators may be more 
effective and efficient during periods of higher 
HRV, such as during the daytime, and may 
benefit from more rest and recovery time during 
periods of lower HRV, such as during the 
nighttime. The lack of significant difference in 
RMSSD values between daytime and nighttime 
suggests that this measure may not be sensitive 
to workload demands or circadian variations. 
This finding could have implications for the 
selection of HRV measures used to monitor and 
assess the health and performance of remote 
control operators, and may suggest that other 
measures, such as IBI or SDNN, may be more 
suitable. Further investigation is necessary to 
determine the specific mechanisms underlying 
the observed trends in HR variability during 
nighttime work shifts. Besides, future research 
could focus on investigating the impact of 
environmental factors, such as temperature, 
noise, and light exposure, on HRV during 
nighttime work shifts, as well as the impact of 
sleep quality and duration on HRV. (Stephenson 
et al., 2021). 
6. Conclusion 

This study aims to investigate the impact of various 
factors, such as day-night conditions and time 
progressing, on the fatigue levels of remote 
operators controlling MASS. To accomplish this, a 
simulated remote navigation experiment was 
performed to measure the mental workload and 
fatigue level of operators. The results of the study 
showed that the workload and fatigue levels of 
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remote operators were influenced by various 
factors, such as the time of day, task complexity, 
and the duration of time on task. The study also 
identified the need for a shift design that can 
minimise potential safety issues caused by fatigue 
and abnormal workloads, ensuring the safe and 
efficient operation of MASS. 

Overall, this study provides valuable insights 
into the design and operation of RCCs for MASS. 
The findings can inform the development of 
guidelines and policies for the operation of MASS, 
particularly in terms of shift configurations and 
workload management. Further research can build 
on this study by exploring the impact of additional 
factors, such as the operator’s experience and 
training, on workload and fatigue levels. 
Additionally, future studies can investigate the 
effectiveness of interventions such as rest breaks 
and task rotation in reducing operator fatigue. 
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