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Aging of safety barriers can degrade their performance and increase risk in Oil and Gas (O&G) facilities. Condition-informed risk 
assessment can be used to assess the risk of a facility given the actual performance of its safety barriers and eventually prescribe 
maintenance activities. In this work, we propose a novel definition of Key Performance Indicators (KPIs) of safety barriers that allows 
accounting for their aging. When sufficient barrier failure data are available, a Q-Weibull model is used to quantify a corrective factor 
that multiplies the no-aging basis KPI value. When barrier failure data are scarce, which is often the case in practice, the corrective 
factor is quantified by an expert-based Weibull-like distribution, that anchors some or all the different stages of barrier life (such as 
infant and wear-out mortality phases) with the few, limited data available. The safety barrier of Design Integrity (DI), typically 
employed in upstream Oil and Gas (O&G) platforms, is numerically elaborated as a practical example. 
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1.  Introduction 

Process safety incidents in Oil and Gas (O&G) facilities 
can cause damage to both people and the environment, 
and lead to large economic and reputational losses. 
Safety by design is pursued by implementing both 
preventive and mitigative safety barriers, to reduce the 
probability of occurrence of accidents and to mitigate 
their consequences, respectively (ISO 17776, Di Maio 
et al. 2023a, Di Maio et al. 2023b). However, aging of 
safety barriers can degrade their performance and lead 
to a larger risk. To authors knowledge, the approaches 
so far proposed in the literature for the assessment of 
safety barriers performance (to name few, simplified 
risk indexes (Cozzani et al., 2009), Monte Carlo 
simulation (Abdolhamidzadeh et al., 2010) and Bow-Tie 
diagrams (Cherubin et al., 2011)) still neglect the 
influence of the safety barrier degradation on its 
performance (Landucci et al., 2016). 
To overcome this limitation and enable a condition-
informed risk assessment (Di Maio et al., 2018) that 
would assess the risk of an installation given the actual 
performance of its safety barriers, in this work a novel 
definition of a Key Performance Indicator (KPI) of 
safety barriers is proposed. The novelty of the proposed 
approach consists in the definition of a time (t)-

dependent corrective factor  that multiplies the 
typically adopted no-aging basis KPI value. Such 
corrective factor  is expected to well suit the typical 
phases of an aging system (i.e., infant mortality, useful 
life and wear out): when sufficient barrier failure data is 
available,  can be quantified with a Q-Weibull 
model (Assis et al., 2013) coupled with a numeric 
algorithm (in this work, the Non-dominated Sorting 
Genetic Algorithm (NSGA-II) (Deb et al., 2002)) to fit 
the model parameters to the data; when, in practice, 
barriers failure data is usually not sufficient for a proper 
fitting of the Q-Weibull model, an expert-based 
Weibull-like distribution is instead used to anchor some 
(or all) the different stages of barrier life with the few, 
limited data available. 
In this work, we consider as case study the preventive 
safety barrier of Design Integrity (DI), typically 
employed in upstream Oil and Gas (O&G) facilities. 
Since detailed failure data are not available for this 
barrier,  is estimated following the expert-based 
procedure. The results are compared with those obtained 
assuming that the performance of DI is not impaired by 
aging, to show the usefulness of the proposed KPI 
definition. 
The remainder of the paper is as follows: Section 2 
presents the novel KPI definition, Section 3 shows the 
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application to the case study; in Section 4, conclusions 
are drawn. 

2.  Novel KPI definition 

The new KPI formulation is justified by 
acknowledging that safety barriers performance 
degrades with aging. A corrective factor , that 
accounts for the actual (at time ) performance of the 
barriers is, thus, used to modify the no-aging basis KPI 
( )  as follows: 

    (1) 

Such corrective factor is expected to catch the typical 
phases that aging systems pass through during their 
lifetime (Jiang et al., 2003): 

� “Infant mortality”, during which failures 
caused by defects in production and/or damage 
in the shipment or assembly occur with a 
decreasing failure rate. 

� “Useful life”, during which random failures 
occur with a constant failure rate.  

� “Wear out”, during which the failure rate is 
increasing due to the aging of the system. 

To do this: 
� when sufficient barrier failure data are 

available, a Q-Weibull model (Assis et al., 
2013) can be used; 

� when barrier failure data are scarce, which is 
often the case in practice, an expert-based 
Weibull-like distribution can be used to anchor 
the different stages of the barrier life with the 
few, limited data available. 

2.1  Q-Weibull model 

The Q-Weibull distribution model (Picoli et al., 2003) is 
a generalized formulation of the Weibull distribution 
model that can accommodate a large variety of 
assumptions on the hazard rate (e.g., unimodal, bathtub-
shaped, monotonic and constant) (Xu et al., 2017).  
The Probability Density Function (PDF) of a Q-Weibull 
distribution  of Eq. (16) can, indeed, be obtained 
from the PDF of a Weibull distribution  of Eq. (17) 
by substituting the exponential function with a Q-
exponential  of Eq. (18) (Assis et al. 2013): 

 

 
(1) 

 
 (2) 

 (3) 

where and  are shape parameters,  is the scale 
parameter, and  is necessary for the 

normalization requirement. Vice versa, the Q-Weibull 
is reduced to the Weibull when .  
The hazard rates  and , for the Weibull and 
the Q-Weibull distribution, respectively, are the 
following: 

  (4) 

  (5) 

Q-Weibull distributions are, thus, suitable to model also 
the bathtub-shaped hazard rate typical of an aging 
system. 
To estimate the Q-Weibull parameters (i.e.,  and ), 
a Maximum Likelihood (ML) approach can be used 
(Genschel & Meeker, 2010). Due to the strong 
nonlinearities, a numerical approach can be adopted to 
solve the ML problem (Xu et al., 2017), such as, in this 
work, the Non-dominated Sorting Genetic Algorithm 
(NSGA-II) (Deb et al., 2002). 
To do this, the ML problem has to be reformulated as 
a constrained optimization problem.  
Let  be a vector of observed 
failure times , independently drawn from 
a Q-Weibull distribution. The likelihood function is 
given by (Xu et al., 2017): 

  (6) 

The log-likelihood function can then be written as 
follows: 

 

 

(7) 

Then, the constrained optimization problem is: 

  (8) 

subject to 

  (9) 
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  (10) 

  (11) 

  (12) 

The results of the optimization problem are the 
parameters ( ) that define the Q-Weibull 
distribution that best represents the failure data . If 
no preventive maintenance is performed on the system, 
the corrective factor  is straightforwardly defined 
as follows: 

    (13) 

where  is the hazard rate for the obtained Q-
Weibull distribution. Such corrective factor is large in 
the useful life phase and small in the infant mortality and 
wear out phases, which are characterized by a larger 
failure rate. In Fig. 1, an example of  is shown. 

 
Figure 1: Example of  (

. 

If, on the other hand, preventive maintenance is 
performed on the system,  can be modified as 
follows (Wang et al., 2000): 

 

 

  

(14) 

where  is the influence of preventive maintenance (if 
 the maintenance is ineffective and if  the 

maintenance is perfect),  is the rate at which the 
influence of preventive maintenance decreases with 
time,  is the operating time since the last 
maintenance intervention and  is the end time of the 
infant mortality phase (in which no preventive 
maintenance is carried out). The corrective factor  
is then defined as follows: 

    (15) 

In Fig. 2, an example of  in case of preventive 
maintenance performed once every two years is shown. 

 
Figure 2: Example  in case of preventive 

maintenance ( , , 
). 

2.2  Expert-based model 

In case of scarcity of barriers failure data, which is 
often the case in practice,  can be estimated using 
a Weibull-like distribution anchored on expert-defined 
anchor points. A piecewise defined Weibull 
distribution, where  are the functions 
defining each phase, is estimated using the following 
expert-based anchor points: 

� Time , which is the end time of the “infant 
mortality”. 

� Hazard rate , which is the hazard rate of 
the “useful life”. 

� Time , which is the time of beginning of the 
“wear out”. 

Therefore, in case of no preventive maintenance, the 
expert-defined corrective factor  is as follows: 
 

 
 (16) 

where  and  are, respectively, the hazard 
rates derived from  and . To assure the 
continuity of the piecewise Weibull distribution, the 
following conditions (Eqs. (17-18)) must be met: 

     (17) 

    (18) 

Since the parameters  and  are not uniquely 
determined with the anchor points and the conditions 
of Eqs. (17-18), they need to be tailored to the specific 
case study, to best fit the slope of the hazard rate in the 
infant mortality and wear out phases. 
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In Fig. 3, an example of an expert-defined  is 
shown.  

 
Figure 3: Example of expert-defined  ( , 

). 

If preventive maintenance is performed on the system, 
 can be instead defined as follows (Wang et al., 

2000): 

 

 
(19) 

The useful life phase may continue until the end of the 
design life of the system, since the system is assumed 
to never enter the wear out phase if perfect preventive 
maintenance is regularly performed. In Fig. 4, an 
example of an expert-defined  is case of perfect 
preventive maintenance, performed once every two 
years, is shown. 

 
Figure 4: Example of expert-defined  in case of 

preventive maintenance ( , , 
, ). 

3.  Case study 

The methodology presented for the accounting for 
aging when calculating the KPI of safety barriers has 
been applied on an O&G preventive safety barrier, 
called Design Integrity (DI), whose function is to 
ensure that functional performance standards are met, 
through the redesign of the asset or the definition of 
specific mitigation requirements during operation, 
maintenance, inspection and control. The available 

data comes from a typical O&G asset. DI is an event-
based safety barrier, whose events (e.g., number of 
incidents, alarm counts, number of Emergency 
Shutdowns (ESDs) or Process Shutdown (PSDs)) are 
customary counted for calculating event-based KPIs 
that are compared with reference KPI distributions 
preliminary defined; these KPIs are, finally, 
aggregated for the evaluation of the probability of DI 
to be in Health State (HS) “High”, “Medium” or “Low” 
(H, M, L, respectively) (Di Maio et al. 2021). To model 
the relationship between KPIs and HS {H,M,L} we 
resort to a probabilistic relationship, where 
prototypical conditions are used as anchor points, as in 
(Di Maio et al. 2021). 

3.1  Current KPI definition 

The current DI KPI consists in the aggregation of two 
KPIs:  

1. , referred to the events “Rate of opened 
inhibits/overrides on SECEs”, to be compared 
with a normal distribution N(62,48). 

1. , referred to the events “Corrective vs 
total maintenance”, to be compared with a 
normal distribution N(31,13).  

These KPIs are aggregated to calculate the probabilities 
of DI to be in HS {H,M,L} (  
respectively) as follows: 

 
 

 
 

 
 

where  
  (20) 

and  is the , j=1,2, taken at the end of the previous 
monitoring/inspection interval. 

3.2  New KPI definition 

Since detailed failure data were not available, the 
corrective factor  has been estimated with the 
expert-based procedure of Section 3.2.2, using the 
following expert-defined anchor points: 

�  
�  
�  
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The parameters of the resulting Weibull distributions, 
tailored to represent the aging of the considered asset, 
are the following: 

1.  
2.  
3.  

The corrective factor  that results from the 
combination of the three Weibull distributions is 
reported in Fig. 5, in case of no preventive maintenance.  

 
Figure 5: Results of  for the case study. 

From the results of Fig. 5 it is possible to notice that 
the infant mortality phase presents a steep slope, 
whereas the wear out phase presents a much gentler 
slope. This is due to the fact that the production defects 
and early damages, typical of the infant mortality 
phase, should be identified (or should lead to failure) 
in the first months of operation, whereas the aging of 
the considered asset is a slow process, since the asset 
is characterized by a long design life. 
The corrective factor  in case of perfect preventive 
maintenance (  and ) performed once 
every two years is shown in Fig. 6. 

 
Figure 6: Results of  for the case study in case of 

preventive maintenance. 

From a practical point of view, assuming that the asset 
whose KPI has to be quantified has an age equal to 

, from Fig. 6 we can calculate 
 (if we deem that preventive maintenance practice 

is a realistic assumption); this modifies the no-aging 
KPIs (  and ), to 

 and . The aggregation 
procedure of Section 3.1 can be used to obtain the 

probabilities of DI to be in HS {H,M,L}, considering 
, since the data of  and 

 refer to the first monitoring interval: 
�  
�  
�  

to be compared with the no-aging probabilities 
( , , ). The 
newly defined KPI leads to smaller probabilities for HS 
High and Medium and to a larger probability of HS 
Low, reflecting the age of the system that is still in the 
infant mortality phase and is, thus, exposed to early 
failures. Such probabilities can be used in a condition-
informed risk assessment that takes into account the 
asset age and adjusts its risk profile accordingly. 

4.  Conclusions 

In this paper, a novel KPI definition is proposed to 
account for the impact of the aging of safety barriers on 
their performance. A corrective factor is defined to 
multiply the non-aging basis KPI value and is quantified 
with a Q-Weibull model, under abundance of failure 
data, or with an expert-based Weibull-like distribution, 
when failure data is scarce. The new KPI formulation 
has been tested on the DI safety barrier, typically 
employed in upstream O&G facilities. The proposed 
approach can quickly assess the performance of aging 
safety barriers, as shown by the comparison between the 
non-aging HS probabilities and those obtained with the 
new KPI, and can enable a condition-informed risk 
assessment that updates the risk profile as the system 
ages. Further developments and refinement of the model 
proposed can focus on additional info derived from DI 
safety barriers condition monitoring data, the safety 
margins taken in the design phase, and the facilities 
process production (pressure, temperature and fluid 
characteristics) parameters.  
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