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In any real system, every event takes some amount of time, no matter how small. Therefore, conducting analyses 
related to evaluating the level of any system’s performance often refers to investigations of given systems' timing 
parameters. In practice, the timing analysis can be typically performed with the use of, among others, Petri nets with 
time extensions approach. The main types of Petri nets models that allow the analysis of temporal aspects include 
time Petri nets (TPNs), timed Petri nets, stochastic timed Petri nets or coloured timed Petri nets. In the presented 
paper, the authors introduce an alternative time Petri net model with dynamic time intervals. In the proposed 
approach a dynamic firing time interval is assigned to tokens. In addition, the application example for the 
transportation system is described. Petri net with the timed token model for the presented example and its analysis 
are discussed. The future research directions are also defined.  
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1. Introduction  

For complex systems, where the problem of 
modelling the relationship between two distinct 
subsystems that affect the overall system 
availability becomes important, many studies 
propose the consideration of time-based reserving 
as well as timing analyses as a method for 
improving overall reliability (Werbińska-
Wojciechowska 2013). The timing analysis was 
typically performed with the usage of such 
techniques as timed automata (Alur and Dill 
1994; Bengtsson and Yi 2004), timed state charts 
(Kesten and Pnueli 1991; Eshuis 2005) and Petri 
nets with time extensions (Popova-Zeugmann 
2013; Wang 1998). Comparison and brief survey 
of these approaches may be found, e.g., in 
(D’Aprile, et al. 2007; Bérard, et al. 2006; 2008; 
Bouyer, et al. 2006; Shingo 1992).  A survey of 
time roles and methods for time analysis in Petri 
nets is provided in (Bowden 2000).   
In the context of transportation systems,  Petri 
nets (PNs) have recently attracted significant 

attention for modelling and studying their 
risk/reliability evaluation issues. This is mainly 
due to the many different types of Petri nets that 
have unique properties to model specific 
applications. One of the literature reviews on Petri 
net applications for transportation systems is 
presented in (Cavone, et al. 2018; Ng, et al. 2013). 
In (Cavone, et al. 2018) the authors focused on the 
real-life applications of Petri nets in the area of 
freight logistics and transportation systems. There 
were investigated modelling aspects of water 
transport, road transport, air transport, rail 
transport, pipeline transport, as well as intermodal 
and multimodal transport. Issues on urban traffic 
transport performance management based on 
Petri nets use are surveyed in work (Ng, et al. 
2013). The obtained results in both studies 
underline the PN-based modelling and simulation 
potential for transportation systems performance 
also in the aspect of time analyses conducting.  
The types of Petri nets models that allow the 
analysis of time aspects are reviewed, e.g. in 
(Diaz 2009). We can distinguish time Petri nets 
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(TPNs), timed Petri nets, stochastic timed Petri 
nets or coloured timed Petri nets.  In general, the 
time parameters express the delay between the 
time when the transition is ready to fire and its 
firing (Berthomieu and Menasche 1982; Merlin 
1974), or the (Berthomieu and Diaz 
1991)duration of firing the transition 
(Ramchandani 1973), or are connected with 
places, tokens (Sifakis 1977). A detailed 
description of the basic classes of Petri nets 
extended by time aspects can be found in 
(Popova-Zeugmann 2013; Berthomieu and Diaz 
1991). 
In Petri nets they are two basic type of elements: 
places and transitions. Places represents for 
example resources, system components, 
channels, transitions – events, actions, executions 
etc. The state of a Petri net is defined by the sets 
of token distributed in Places. The classic 
solutions are based on an approach, let's call it the 
"system thinking" approach. We see the Petri net 
states as a model of a system states. The changes 
in Petri net states are associated with the so-called 
transition firing, resulting in  token distribution.  
The presented paper introduce an alternative time 
Petri net model, based on an approach, let’s call it 
the „object in system thinking” approach. The 
main differences between time Petri net 
(Berthomieu and Menasche 1982) and presented 
solution is that a dynamic firing time interval is 
assigned to tokens, as will be shown. 
As a result, the presented paper is focused on the 
introduction of an alternative time Petri net model 
with dynamic time intervals. In the proposed 
approach a dynamic firing time interval is 
assigned to tokens. Following this, In the 
Introduction section, the authors present a short 
literature review of the investigated research area. 
Later, section 2 introduces the new time Petri nets 
with time tokens. The proposed approach is 
presented based on the case example of 
transportation system performance. The paper 
ends with conclusions and a definition of future 
research directions. 

2. Time Petri Nets with Timed Token 

(TPNwTT) 

In this paper, a method for modelling and analysis 
the time Petri net with time assigned to tokens is 
given. The main differences is dynamic time 
interval. In TPN the dynamic time interval is 
associated with transitions. In the presented 

solution the dynamic time interval is associated 
with token. Hence, in TPN for the transition to be 
enable it is required (as part of the condition) 
“each input place contains a sufficient number of 
tokens”, in TPNwTT  “each input place contains 
a sufficient number of tokens with the appropriate 
time parameters” as will be shown. 
The TPNwTT is defined as an ordered 6-tuple  
<P,T,B,F,O0, SI>, where: 
� P={p1,...,pm} is the set of places.  
� T={t1,...,tn} is the set of transitions. 
� B: PxT�N – backward transition function.  
� F: TxP�N – forward transition function. 
� O0={{o1{pi1, ��1, �1�}, ..., ok{pik, ��k, �k�}} 

� 	 is the initial set of tokens, where ok – is 
the token identifier (it has an ordinal 
meaning), pik – is the place indicator for 
token ok (pik  P ), �k, �k – denotes time 
interval in which the transition can be fired 
using that particular token, details will be 
explained later,  

� SI: TxP�Q+ x (Q+�{
}) – function 
assigning the static interval  of firing time to 
each forward transition.  Let <�S

k,p, �S
k,p� be 

the static interval for a given arc from 
transition k to place p. Static intervals are 

used to determine intervals for token or 

tokens created after the transition is 

firing. 

 
2.1. Marking and tokens in TPN vs TPNwTT 
In a Petri net without time point of view, 
TPNwTT still has an initial marking which 
assigns a natural number of tokens to each place 
(but in different way). This marking is still 
graphically represented by the corresponding 
number of tokens (points) on the places, but the 
tokens are distinguishable and have assign 
dynamic time interval as was shown in Fig. 1.  

 

Fig. 1. The TPNwTT. 
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For TPNwTT given in Fig. 1: 

      (1) 

2.2. States in a TPNwTT 
According to (Berthomieu and Menasche 1982),  
a state Si ={Mk, Il} of TPN is described by the pair 
Mk, Il.  In presented solution, the vector I is not 
necessary – the time dependencies are expressed 
(indirectly) by set of timed tokens Oi. Therefore, in 
presented solution, “the transition is ready to fire” 
should be considered in the context of specific 
subsets of tokens and the time parameters of such 
sub-sets, which will be presented now. 
 
Definition 1. (minimal set of enabling tokens) 

The minimal set of enabling tokens for the 
transition ti (denotes as MSETi,j, where i – the 
transition number,  – denotes ordinal 
number of MSET for ti) is the set consisting of the 
smallest combinations of tokens that result: each 
input place of ti contains a sufficient number of 
tokens. MSETi,j �� MSETi,k  for each k�j. 

Let us the MMSETi,j(p) denotes numbers of tokens 
from MSETi,j in place p. Therefore, for the 
transition ti condition (2) must be fulfilled.  

                      (2) 

Definition 1 is similar to condition “each input 
place contains a sufficient number of tokens” (see 
(Berthomieu and Menasche 1982)), but due to the 
fact that time is assigned to tokens and tokens are 
distinguishable, the subsets of tokens are taken 
into consideration (instead the number of tokens).  

Definition 2. (minimal and maximal time of 

MSETi,j) 

Let us the minimal and maximal time of MSETi,j 
denotes respectively as �MSi,j, �MSi,j, are equal: 

                     (3) 

where: ol – token in MSETi,j with �l, l – ranges 
over the MSETi,j. 

According to the Definition 2., intuitively, the 
time parameters �i, �i  assign to a token oi denotes, 
respectively: the minimal time that must elapse to 
use the token, the maximal time after which the 
token must be used as soon as possible. The main 
difference is that in the TPN, first the appropriate 
number of tokens is collected, and then we count 
the time to fire the transition (after firing, the time 
is reset). In the presented solution, we are waiting 
for a sufficient number of tokens which fulfil the 
time criteria.  

Definition 3. (enabled) 
The transition ti is enabled if and only if: 
� is enabled for marking - have at least one 

MSETi,j, 
� is enabled for time - all other enabled for 

marking transitions can be firing later (the 
condition (14) must be fulfilled).  

                                         (4) 

where: 
 - relative (to “now”) time of firing the 
transitions ti, �MSk – other minimal set of enabling 
tokens, k – ranges over the set of MSET. 

Definition 4. (firing) 

Let N = {P, T, B, F,O0, SI} be a Petri net. Let Om 
be a marking in N. A transition tf  T can fire in 

Om (notation: ), if tf is enabled in 
Om. After the firing of tf the Petri net is in the new 

marking On (notation: ). 

Firing of the transition tf consists of three steps 
(analogically to steps in TPN):  

(i) removal from set O of B(p,tf) tokens from 
each input places according to MSETf,j,  

(ii) calculating a new time parameters to tokens, 
(iii) addition to set O of F(tf,p) tokens (whit time 

interval equal to static time interval 

SI(tf,p)) to each output place. 

These operations are given by three steps as 
follows: 
STEP 1. Eliminations of tokens in MSETf,j from 
set Om.    
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(5) 

STEP 2. Shift times of all remaining firing 
intervals by the value θ. 
 

 (6) 
 

STEP 3. Introducing to the set Om new tokens on, 
where n is the next (not used) ordinal number for 
token. For each p to which the arc leads from tf 
and F(tf,p) times introducing new tokens on will 
be performed as follows: 
1.   Om � {on {p, <�S

tf,p, �S
tf,p>} 

2.  calculating new MSETs with on  (if possible). 
3. n=n+1  
 
Analogically to the TPN, the number of states is 
infinite and the concept of state classes in 
TPNwTT will be introduced. 
 
2.3. State classes and reachability graph in 
TPNwTT 
The difference between condition and class is 
qualitative. The dependencies described by the 
domain in TPN (Berthomieu and Menasche 1982; 
Berthomieu and Diaz 1991), result in TPNwTT 
(indirectly) from the time parameters assigned to 
tokens. Hence, the notation of the state S0 and the 
class C0 does not differ, but the next classes (as 
opposed to states) are determined based on the 
calculation of the time intervals (not based on the 
value of 
), what will be shown. 
 
Definition 5. (state classes) 

State classes Ci is a single: Ci = (Mi), where: Mi – 
is the marking (all state in the class have the same 
marking). 

In comparison with definition given in 
(Berthomieu and Diaz 1991), the domain Di is 
omitted, due to fact, that dependencies follow 
from the parameters assigned to tokens.   

Let us denote �(ti) to be the time instant of firing 
of the transition ti. 

Initial class C0 = (M0) obtain as follows: the initial 
marking is the initial marking of the Petri net. Let 
tf be the firing transition in class Ci. The class Cj 

is computing from class Ci (notation ) 
by performing the following operations: 

STEP 1. Let tf be the firing transition with MSETf,j 
by marking Om. The operations (O1) for all tokens 
outside MSETf,j are performed. 

                   (7) 

where: k – ranges over the set of MSET (including 
MSETf,j) 

STEP 2. Eliminations of tokens in MSETf,j from 
set Om and MSETf,j elimination.    

                                         (8) 

STEP 3. Introducing to the set Om new tokens on. 

for each p to which the arc leads from tf and F(tf,p) 
times introducing new tokens will be performed 
as follows: 

           (9) 

where n is the next (incremented) number assign 
to the introducing into the Om set token. 

 calculating new MSETs with on (if 
possible). 

Using the firing rule a reachability graph can be 
built, as was shown in Fig. 2.  
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Fig. 2. a) The state classes diagram (standard notation), b) Corresponding TPNwTT models c) The state classes 
diagram with additional information 

 

4. Case study  

Let us assume that our company has two 
subdivisions and a central storage facility, and 
that when the work at the subdivisions is 
completed (the conventional '0' moment), the 
products are forwarded to the warehouse (Fig. 3).  

 
Fig. 3. A simplified model for forwarding goods 
to the warehouse 
 
In the case of the first branch, we have two 
vehicles; in the case of the second, we have one 
(as shown in Fig. 3). In order to simplify the 
analysis, let us assume that the transport of goods 
takes place mainly on the highway and that it 
takes place in the time interval given in the Fig. 3. 
The values were determined by taking the value 
of the time calculated for the given distance and 
the average speed of the vehicle reduced (for the 
lower limit) or increased (for the upper limit) by 

10% of this value. In addition, twenty minutes 
were added to the upper limit due to the possible 
delay of the vehicle departure from the 
conventional "0" moment.  
Let us assume that the warehouse in the afternoon 
and at night is operated by one vehicle unloading 
station and that the vehicles are unloaded in the 
order of their arrival. Let for each vehicle it takes 
no less than tunl_min and no more than tunl_max to 
unload, and given that the unloading procedure 
involves properly parking the vehicle, unloading, 
completing the documentation and leaving with 
the vehicle, that the minimum unloading time 
satisfies the inequality tunl_min ≥ 10. A model of a 
temporal Petri net for the described transport 
system is shown in Fig. 4. In contrast to classical 
temporal Petri nets, by assigning time to markers, 
we can simplify the model to a single location 
modelling "vehicles on the road".  Building the 
model using classical TPNs would require 
modelling with three transitions - due to the 
different travel times of the vehicles. 
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Fig. 4. Timed Petri Net with time assigned to 
tokens, that represents the transportation system 
from Fig. 3. 

 The analysis of the timed Petri net allows for the 
examination of all possibilities related to, among 
other things, the different order of arrival of 
delivery vehicles. The results of the analysis 
covering these possibilities are shown in Figure 5. 
Analysing in the class diagram the paths leading 
to class C8 modelling the situation when all 
vehicles have been unloaded, we obtain 
relationships modelling the shortest and longest 

unloading times of all vehicles, denoted tunl_all_min, 
tunl_all_max respectively. The shortest unloading 
time for all vehicles is given by equation (10) and 
corresponds to the unloading starting from the 
faster vehicle from branch one, while the longest 
unloading starts from the vehicle from branch two 
and is given by equation (11), whereby, the last 
two components of the sum describe the waiting 
time or lack thereof when the minimum unloading 
time for a single vehicle tunl_min is large enough. 
Such knowledge can be used, for example, to 
assess whether vehicles will wait to be unloaded 
and, if so, how much and whether, for example, it 
is worth running an additional stand to unload one 
or more vehicles. 
 

                    (10) 
 

 
 
            (11) 
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Fig. 5. The results for timed Petri net 
 

5. Conclusions 

Petri nets with time assigned to tokens allow easier 
modeling and analysis of object-oriented systems 
than classical time Petri nets. The present work 
aims to demonstrate the new model of timed Petri 
nets along with outlining the area of its 
applicability. In the later perspective, it is planned 
to develop an automatic conversion of such a 
network model into software that monitors the 
location of objects by, for example, analyzing their 
location data in the real world and comparing it 
with criteria derived from the time Petri net model. 
This should make it possible, among other things, 
to detect situations involving failures or delays, and 
ultimately, to take timely action to prevent 
undesirable situations from occurring. 
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