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Burn-in (BI) tests are the industry standard to screen out the early life failures of semiconductors. Advanced 
sampling and test strategies allow to reduce BI times or sample size without affecting the defined quality targets. A 
new BI approach introduces a lot-specific health factor h that correlates to the probability of early failures. In our 
approach, the health factor of a specific wafer lot is derived from the Advanced Process Control (APC) system that 
logs all meta and logistics data of the production process, but not the raw sensor data. Complementary AI models 
were investigated to provide health indicators with a high correlation to early failures. 
A practical study has been performed based on real APC data and several known BI defects. Due to the amount of 
data, big data strategies had to be applied and tested to reduce the computational demands. Our investigation shows 
that a combination of a binary classifier and an LSTM autoencoder model allow for a good assessment of the health 
factor. In addition, the autoencoder allows to identify and visualize potential issues of the production process via its 
loss function. That enables process engineers to assess and to investigate potential risks and issues of a specific lot. 
 
Keywords: Semiconductor Devices, Burn-In Tests, Early Life Failure Rate, Advanced Process Control, Deep Neural 
Networks. 
 

1. Introduction 
Safety-critical applications of semiconductor 
devices, such as in automotive, aerospace or 
medical systems, require special measures in the 
production process to ensure that the demanding 
reliability targets are met. Typically, electronic 
devices exhibit an increased failure rate at the 
beginning of their lifetime (early life failures). 

Burn-In (BI) is a widely used engineering 
method to identify faulty or weak items from a 
standard production (Block, Savits, 1997) and 
thereby to screen out early life failures. In BI tests, 
either 100% of the produced devices (100% BI) or 
random samples (BI study) are operated under 
accelerated stress conditions, such as increased 
temperature or voltage. Devices that do not meet 
the assured properties are considered as BI failures 
and removed from production (Kurz et al, 2018). 

1.1. Advanced BI concepts 
100% BI leads to long testing times and high 
costs. Therefore, advanced sampling and test 
concepts have been developed to reduce BI times 
and/or sample size without affecting the defined 
quality targets. A common approach is to evaluate 
the failure probability p in the early life of the 
devices in a BI study. Classically, this is done by 
computing the exact Clopper–Pearson upper 
bound for p (Kurz et al, 2018). 

Advanced BI concepts take advantage of 
flexible sampling plans or previous BI studies for 
follower products (Kurz et al, 2021). For further 
burn-in improvements, recent approaches have 
investigated specific process data, such as the BI 
test measurements, to predict the number of 
defective units and their early failure probability 
(Baraldi et al, 2021). 
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1.2. Objective 
While current BI concepts are mostly based on the 
overall production process and its observed 
failure rate, this paper proposes a new approach 
that analyzes the likelihood of early life failures 
of individual wafer lots within a given production 
process. A lot-specific health indicator h is 
introduced that correlates to the likelihood of early 
life failures depending on the individual production 
history of the wafer lot. 

Thereby, the health indicator allows to reduce 
BI efforts: Wafer lots with an average or low health 
indicator need the full test regimen, as determined 
by the chosen BI concept. For wafer lots with an 
above average health indicator, however, BI 
sample size or BI time can be reduced without 
affecting the quality target.  

Due to the low amounts of BI failures in the 
range of a few ppm, it is usually not possible to 
correlate BI failures to a single process step or a 
single root cause and, therefore, the health 
indicator must consider the whole production 
process. 

2. Approach  
For the efficient processing and reduction of the 
available process data into a single health indicator, 
a data chain was created that combines big data 
with machine learning algorithms: 

(i) Acquisition of the APC data 
(ii) APC data reduction 

(iii) Machine learning using selected APC 
data sets (training data) 

(iv) Combination and cross-validation of the 
AI models (by using test data) 

2.1. APC data acquisition 
Since many years, Advanced Process Control 
(APC) has become state of the art in the 
semiconductor industry for monitoring and 
controlling the very complex process flows and 
manufacturing parameters. 

Usually built on top of the machine control 
systems, APC systems are deeply embedded in the 
semiconductor manufacturing process. APC 
comprises a set of control methods, such as 
Statistical Process Control (SPC), Fault Detection 
and Classification (FDC), Run-to-Run (R2R) 
control and Virtual Metrology (VM), see Moyne et 
al, 2016 and Schellenberger et al, 2010. 

While originally intended for process control 
and automation with regard to systematic 
variations, current APC systems collect a vast 
amount of process data that document the 
production process of a wafer lot comprehensively. 

The APC data does not include any sensor 
raw data or image data from visual inspections 
which are typically used for AI-based wafer 
analysis. If deviations from the standard process 
occur, however, measures are taken and thereby 
become visible in the APC data e.g., as error 
events, additional inspections, or extended 
handling times. 

 Therefore, the APC data can be seen as high-
level logistics data or meta data that aggregates the 
underlying raw data. 

Due to the amount of data, Big Data 
technologies are required to store and process the 
APC data in real-time, e.g., data lakes built with the 
Hadoop Distributed Filing Systems (Moyne et al, 
2016). 

2.2. APC data reduction 
The amount of APC data may easily reach several 
gigabytes per wafer lot. As data sets from multiple 
wafers were required to train and to validate the AI 
models, it was crucial to further optimize the 
training data. Therefore, a set of data reduction 
techniques was combined into a data reduction 
pipeline, see Fig 1: 
 

 
Fig 1. Schematic diagram of the data acquisition and 
data reduction steps. 
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� Basic data cleaning: remove empty or 
irrelevant data and features, such as process 
filenames. 

� Label encoding: encode non-numeric 
features to numeric values. 

� Feature reduction: remove features that have 
constant values or that correlate with other 
features. 

� Sampling: use every nth sample only. 

 
2.3. AI models 
In order to compare and to validate the AI models 
for APC data analysis, two different AI models 
were selected and trained.  

� LSTM autoencoder and 
� Binary classification. 

2.3.1. LSTM autoencoder model 
As semiconductor production has already reached 
a high-quality level, very low defect rates in the 
order of a few ppm are expected. Therefore, only 
few data sets from BI failures are available which 
leads to highly unbalanced data. Autoencoder 
models in general provide the advantage that they 
can be trained on the “good” data of passed lots, 
whereas the few data sets of failed lots can be 
reserved to validate the AI model. 

A Long Short-Term Memory (LSTM) 
autoencoder is a type of neural network that can be 
used for anomaly detection in sequential data 
(Nguyen et al, 2021). It consists of two parts: the 
encoder and the decoder. The encoder maps the 
input sequence to a lower-dimensional space, 
while the decoder maps the lower-dimensional 
representation back to the original sequence. The 
autoencoder is trained to minimize the 
reconstruction error, which is the difference 
between the original and reconstructed sequence. 

The loss function used for training the LSTM 
autoencoder is typically the mean squared error 
(MSE) between the input sequence and the 
reconstructed sequence.  

The aim is to achieve a low reconstruction 
error/loss for the APC data of the wafer lots that 
passed BI and that serve as the training data for the 
model, and to determine a threshold for anomaly 
detection. Subsequently, the model is tested on the 
failed lots - the ones that exhibited faults during BI. 
If the APC data of the failed lots deviates from that 

of the passed lots, the model should generate a 
higher reconstruction error, generating anomalies. 

Then, either the number of anomalies or a 
90%-quantile of the loss function can be used as the 
lot-specific health indicator h.  

2.3.2. Binary classifier model 
The Binary Classifier is a type of machine 

learning model that can be used to classify data into 
two classes: positive and negative (Kiranyaz et al, 
2021). In the context of the BI process, the binary 
classifier is used to differentiate between lots that 
fail the BI test and lots that pass the BI. The output 
of a binary classifier p0 is a probability value, 
which represents the likelihood of the input 
belonging to one of the two classes. 

In the context of APC data analysis, the 
probability p0 that a given lot is classified as 
“passed” can now be used as its health indicator h. 

The binary classifier can be evaluated using a 
confusion matrix, which summarizes the number 
of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). From the 
confusion matrix, various metrics can be 
calculated, such as the accuracy, precision, recall, 
and F1 Score, which provide insights into the 
performance of the classifier. 

The F1 Score, the harmonic mean of 
precision and recall, is the commonly used metric 
for binary classification problems, as it considers 
both the precision and recall of the classifier. A 
higher F1 Score indicates better performance of the 
classifier: 

  (1) 

where,  

  (2) 

  (3) 

In this paper, F1 scores are analyzed 
individually for passed and failed lots. 

2.4. Combined models 
By leveraging the strengths of each model 
discussed, a more nuanced understanding of the 
data can be achieved, and specific areas of interest 
come into focus. 

The binary classifier provides a macroscopic 
view using the time analysis data, identifying 
whether a given lot is likely to pass or create 
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failures in the BI test. However, it does not provide 
detailed information about which specific aspects 
of the process are contributing to these outcomes. 
In addition, it requires balanced data sets of passed 
and failed lots which may be difficult to obtain in 
production processes with low failure rates. 

This is where the LSTM autoencoder comes 
in - it provides a more microscopic view of the data 
by identifying specific patterns and anomalies 
within each time series.  

3. Case Study 
The case study is based on real APC data that was 
logged during a power semiconductor production 
process and retrieved from the manufacturer’s 
data lake. 

3.1. APC data analysis 
In total, the investigated APC data covers a period 
of 22 months in which several BI failures 
occurred. Full data sets from 10 lots where defects 
were identified in BI tests (failed lots) and from 
52 lots without known defects (passed lots) were 
collected to train and test the AI models. 

The resulting 62 datasets consist of a time 
series of data samples that merge the APC data 
from all processing steps per selected wafer lot into 
one data file. The number of data samples per 
wafer lot is highly variable, with an average of 
about 15 million and a maximum of 26 million data 
sets (Fig 2). Each sample contains 52 features, such 
as the involved machines, carriers and actions, key 
process parameters, and the detected deviations. 
 

 
Fig 2. Time-series distribution of the APC datasets per 
lot and month. 
 

After the data reduction steps described in 
2.2, the data could be reduced to 20 independent 
features. 

3.1. Application of the LSTM autoencoder 
At first, an LSTM-based autoencoder model was 
selected and trained on the passed wafer lots. In 
addition, various strategies were tried to reduce 
the very large amount of training data and long 
training duration, such as data sampling and lot 
reduction. The accuracy of the autoencoder 
models was assessed by their loss functions, see 
the example shown in Fig 3. 

This model configuration proved a slight 
difference between passed and failed wafer lots: 
For example, using 5 lots for the AI training and 
sampling every 5th data sample, the mean absolute 
error of the loss function for the failed lots 
increased by 26% compared to the passed lots (157 
vs. 124). 
 

 
Fig 3. Mean average error distribution of the loss 
functions of 5 passed and 5 failed wafer lots, shown as 
histograms. 
 

Still, the differences between passed and 
failed wafer lots remained small, and they were 
highly dependent on the sample size and the 
selected training datasets. In addition, it proved 
difficult to map the loss function to a single, 
meaningful health indicator h. Therefore, a 
different AI model was investigated. 

3.2. Application of the Binary Classifier  
To gain a deeper understanding of the APC data, 
we conducted an in-depth time analysis: While 
some features contained numerical values with a 
high variability, other features contained non-
numeric values that stayed constant for several 
time steps. To address this, we calculated the 
duration for each unique value available for each 
feature by determining the difference between the 
first timestamp where the unique value was 
observed and the last timestamp (Fig 4). By 
performing this time analysis, we were able to 
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gain more insights into the duration of various 
events and patterns. 
 

 
Fig 4. Data reduction based on feature duration. 

 
In addition, a visualization tool helped to 

quickly identify those feature durations that 
differed significantly between passed and failed 
lots (Fig 5). Similar results could have been 
achieved by training and evaluating ML models on 
single features. But this approach would have 
required several weeks of processing time. 
 

 
Fig 5. Visualization of features and their duration with 
regard to passed (“good”) and failed (“bad”) wafer lots. 
 

The visual pre-selection allowed narrowing 
down the feature set to focus on the most 
significant features for AI training and evaluation. 
Distinct sub-sets of the APC data were created per 
feature that contained only the duration and the 
values. 

For the binary classification model, a deep 
neural network with convolutional layers and a 
fully connected output layer was trained on each 
selected feature. As a result, a handful of features 
were separated, which provided significantly better 
results than others. 

The resulting model confirms the results of 
the LSTM autoencoder, but with a much higher 

accuracy for passed lots, as shown with F1 scores 
of >90%, depending on the selected features, see 
Table 1. However, the F1 scores for failed lots were 
relatively low leading to further investigations how 
the time-analysis data could be restructured. 

Table 1. Best F1 scores for AI models trained on a 
single feature. 

Feature # F1 score of 
failed lots 

F1 score of 
passed lots 

'Feat_1' 0,74 0,95 
'Feat_2' 0,69 0,94 
'Feat_3' 0,67 0,95 
'Feat_4' 0,33 0,91 
'Feat_5' 0,28 0,92 
'Feat_6' 0,27 0,91 
'Feat_7' 0,22 0,9 

 
3.3. Further data refinement and SHAP 
Analysis 
To further improve the prediction of failed lots, we 
investigated how combinations of multiple 
features would affect the accuracy of the AI. The 
data was restructured in such a way that each row 
would then denote the full sample for a single lot 
while the columns denote the count of unique 
values for the feature(s) Therefore, combining 
multiple features meant an increased number of 
columns. 
 

 
Fig 6. Restructured time-analysis data. 

 
After re-training the binary classifier on this 

newly structured data, the accuracy could be 
improved for some, but not for all features, see 
Table 2. The results showed that the single feature 
‘Feat_1’ provided perfect prediction accuracy - at 
least with the available test data - while 
combinations of different features did not improve 
the F1 scores compared with the single-feature 
approach. 
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Table 2. Best F1 scores for AI models trained on 
restructured time-analysis data. 

Feature or 
combination 

F1 score of 
failed lots 

F1 score of 
passed lots 

'Feat 1' 1 1 
'Feat_1+Feat_2' 0,5 0,92 
'Feat_4' 0 0,85 
'Feat_1+Feat_2+Feat_2' 0 0,89 
'Feat_2' 0 0,89 

 
To further enhance the performance and to 

reduce model complexity, a SHAP analysis was 
applied on the model results. 

Shapley additive explanations (SHAP) 
analysis is a method of interpreting the predictions 
of a machine learning model by assigning 
importance values to each input value of a feature 
to the model (Nohara et al, 2019). This method uses 
the concept of cooperative game theory to calculate 
how much each feature contributes to the 
prediction of the model. 

In Shapley explanations, each feature value is 
considered as a player in a game where the 
prediction is the payout. The contribution of a 
feature value is calculated as the difference in the 
prediction when the feature is included compared 
to when it is excluded. This process is repeated for 
all possible combinations of features, and the 
contributions are averaged across all permutations 
to obtain the Shapley value of each feature. 
Shapley explanations can be used to identify 
important values, detect interactions, and assess the 
robustness of a model. 

In the case of time analysis dataset, SHAP 
analysis was applied to the restructured time-
analysis data, and it allowed to identify those 
feature values that contribute most to the model's 
predictive power. 

As shown in Fig 7,  the number of unique 
values, and consequently the amount of data, was 
reduced by a factor of 3x while maintaining a high 
level of model accuracy. Since SHAP analysis 
provides importance scores for each unique value, 
it also allows refining the APC data to retrain the 
LSTM autoencoder and to focus on a smaller 
subset of the input features. 
 

 
Fig 7. Comparison of F1 scores after SHAP analysis 
(top curve: training data / bottom curve: test data). 
 

4. Results 
With only basic data cleaning, the initial training 
runs of the LSTM autoencoder took up to 72 hours 
on an AI workstation. Therefore, the proposed data 
reduction pipeline was deployed, and training 
times could be reduced to a few hours for both 
autoencoder and binary classifier models. This 
allows to re-train the models on a regular basis if, 
for example, minor process changes or new types 
of failure occur. 

With five selected data sets and using every 
fifth data sample, an LSTM autoencoder model 
was trained that detects differences between passed 
and failed lots, as seen in the maximum MAE of 
their loss functions. Still, the loss functions of both 
classes cannot be considered significantly 
different. 

On the other hand, several AI models based 
on a binary classifier were developed that assess a 
wafer lot’s health with a high accuracy, as shown 
by the corresponding high F1 scores. But the 
successful application of the binary classifier 
depends on the availability of training data from 
failed/passed wafer lots. Our test case provided 
data sets which contained enough BI failures to 
create these balanced data sets. 

 In addition, the binary classifier models 
directly compute the health indicator h per lot (as 
the probability p0 that the lot belongs to the class 
“passed lots”). 
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 The very high F1 score of a single feature, 
however, could be an artifact resulting from the 
limited amount of “failed” data sets. Therefore, it 
might be better to use a combination of several 
features instead. 

5. Conclusion and Outlook 
Both investigated AI models, the LSTM 
autoencoder and the binary classifier, prove our 
initial assumption that issues or deviations in the 
production process are visible in its high-level APC 
data. Thus, the lot-specific APC data sets can be re-
used to calculate the lot’s health indicator h. For 
example, the BI can be reduced in terms of BI time 
and/or sample size if h is above average for a given 
production process. 

 In addition, the AI-based analysis of APC 
data has the advantage that it does not rely on 
physical process models or in-depth knowledge 
about the machines which is typically required to 
analyze low-level sensor data. 

LSTM autoencoder models are the preferred 
tool if zero or very few APC data sets with known 
BI failures are available. If balanced data sets of 
passed/failed lots can be built, additional binary 
classifier models can be trained and optimized. 
These models can predict the health of a given 
wafer lot with a high accuracy. The output of the 
binary classifier p0 can be used directly as the lot’s 
health indicator. 

Beyond the reduction of BI time, the 
combined AI approach generates further insights 
which cannot achieved by a single AI model. 

Although the accuracy of the LSTM 
autoencoder is lower than the accuracy of the 
binary classifier, the LSTM autoencoder may help 
to visualize the results of the binary classifier: All 
deviations from “good” APC data sets, as 
represented by the training lots, appear as spikes 
(anomalies) in the loss function. An example is 
shown in the upper part of Fig 8. 

In the time diagram, the timestamps of these 
anomalies can be assigned to a specific process 
step, machine, or activity (see Fig 8, lower part). 
 

 
Fig 8. Histogram (top diagram) and time series analysis 
(bottom diagram) of the LSTM Autoencoder’s loss 
function 
 

Process engineers may use this visual tool to 
identify and to investigate the critical events that 
are the potential root causes of a low health 
indicator. Thereby, the autoencoder model is able 
to provide the missing explanation of a good or bad 
health assessment which the binary classifier 
model alone cannot produce. 

Therefore, further efforts are ongoing to 
improve the LSTM autoencoder model and its 
anomaly detection based on our positive 
experience with the time-series data restructuring 
and SHAP analysis. 

In addition, further research is required to 
enhance the existing BI reduction strategies with 
regard to the lot-specific health indicator. 
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